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UNSW SCHOOL MATHEMATICS COMPETITION 1993

SOLUTIONS

JUNIOR DIVISION
1. Given real numbers a,b with 0 < a < b, a sequence of numbers is defined by
Iry=a, .'1?2_—"5, I,,+2=11:n+1|—$nf0rn3_>1.

Find T1993.

Solution. We have
ty=a,z2=b, z3=b—a, zg=(b—a)—b=—a, s =a—(b—a)=2a—5.
Now if 2a = b then

g5 =(2a—b)—(—a)=3a—-b
7 =(3a—b)—(2a—-b)=a since 3a —b>2a—b2>0
zs =a—(3a—b)=b—2a
9= (2a—b)—a=a—b since b —2a <0
o= (b—a)—(b—2a)=a sincea —b <0
rpp=a—(a=b)=1b;
while if 2a < b then

rg =(b—2a)—(-a)=b—a
zr=(b—a)—(2a—b)=2b—3a
2 =(2b—3a)—(b—a)=b—2a

since 2b— 3a > 2b—4a > 0
zo ={b—2a)—(2b—3a)=a -0 since b —2a > 0
zip=(b—a)—(b—2a)=ea

ryp=a—(a—b)="b.
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Note that in either case, ;9 = x, and xy; = 2. Since each term in the sequence
depends only on the previous two terms, it follows that z15 = z3, ;3 = 74, and in

general &, = x,_¢ whenever n > 10. Consequently, noting that 1993 = 9 x 221 + 4,
we find

T1993 = Tiggq = Tla7s = - = T4 = —4a .

2. Find a solution in positive integers of the equation

:r:2+:cy—y=1993.

What 1s the total number of such solutions?

Solution. Subtracting 1 from each side of the equation and factorising the left hand

side gives

(¢ — 1)z +y+1)=1992 .

Now 1992 = 2? x 3 x 83, so 1992 can be written as a product of two positive factors

in the following ways:

1992 =1 x 1992 = 2 x 996 = 3 x 664 = 4 x 498
=6x3J32=5x249 =12 x 166 = 24 = 83 .

Clearly £ — 1 must be the smaller factor and = +y + 1 the larger, so each of the above

expressions 1992 = ab yields one and only one solution

z=a+1, y=b-z-1=b—-a-2.

Thus there eight solutions.

T 2 s |1 41 92 13 | 20
y [1YUsSY] DYZ [ 00D | 492 | 024 | 209 | LoZ | o

=1
L=

3. Reconstruct the following long multiplication, in which each dot represents a square
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digit (0,1,4 or 9}, and the question mark represents any digit.

.....

Solution. Since there are only three non-zero square digits, the fourth and fifth lines
must be equal, and different from the sixth. Also, the first digit of the sixth line must
be 1, and hence the entire sixth line is at most 19699. Now suppose that the first digit
of the second line is a 9. Then the fifth line would be at most % of the sixth line, that
is, at most 8755, which is impossible since the fifth line has five digits. Therefore the

second line is 4991.

Now the first digit of the first line must be 4, for if it were 1 or 9 then multiplying by
4 would not give a five-digit number beginning with 1 for the sixth line. Therefore the
sixth line is at least 4000 x 4 = 16000. Indeed, since the second digit is a square and
the third is 6, the sixth line is at least 19600; and so the first line is at least a quarter
of this, that is, 4900. Moreover, since the sixth line is at most 19699, the first is at
most 4924. If the last digit of the first line were 4 or 9 then the last digit of the sixth
line would be 6, which is not a square. Therefore we have reduced the possibilities for
the first line to four: 4900,4901, 4910 or 4911. Trying each of these separately shows

that only 4911 gives a product consistent with the given information in the seventh
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line. Thus the multiplication is as follows.

4911
x 4991

4911
44199
44199
19644

24510801

4. Let n be a positive integer. Show that the number of sequences of ones and threes
adding up to n + 1 is equal to the number of sequences of ones and twos, with no
adjacent twos, adding up to n. Note that order is important in a sequence. For

example, if n = 5 then the possible sequences of the second type are
219, 2191, 1911, 1121, 1182, 11111,

Solution. For each sequence of the first type we may produce a sequence of the second
type by the following rule: replace each three by a one and a two, in that order; then
delete the first number of the sequence (which must be a one). Clearly the resulting
sequence will have no adjacent twos, for every two will either be the first element of
the sequence or will be preceded by a one. Also, the sum of the numbers in the original
sequence was n + 1, and we have deleted a one, so the sum in the derived sequence
is n. This confirms that we have indeed created a sequence of the second type. The
procedure can be reversed: given the sequence we have just found, put an extra one
at the beginning; then every two in the sequence is preceded by a one, and we may
substitute a three for each pair one-two (in that order). This gives a sequence of the
first type, indeed, the very one we started with.

We have shown that the sequences of the first and second types can be matched up

in pairs; therefore the numbers of sequences of each type are equal.
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5. Divide the numbers 24, 38, 39, 44, 45, 46, 48 into two sets in such a way that the sum
of the numbers in each set is prime. Show that this can be done in only one way.
Solution. The list contains.just two odd numbers. These numbers must be placed in
different sets, as otherwise the two sums would be even and therefore not prime. So
we begin by setting

S5={33}, T=4{45].

If all seven numbers are divided by 3 the remainders are 0,2,0,2,0, 1,0 respectively. In
order to avoid having one or the other sum divisible by 3, the numbers with remainder
9 must both be in one set, the number with remainder 1 in the other. There are two

possibilities so far:
S=1{38,39,44}, T={45,46} or S={39,46}, T ={38,44,45}.

In the first case the sum of S is 121 and the sum of T is 91, neither of which is prime.
So we must add 24 to one set and 48 to the other; however, adding 24 to either gives
a total which is divisible by 5 and therefore not prime. Hence the first case does not
lead to a solution.

In the second case S and T add up to 85 and 127 respectively. Since 85 is not prime, §
must also contain the number 24 or 48 or both. If § contains 48 only its sum becomes
133, which is divisible by 7; if S contains 24 only then T has sum 127 + 48 = 175,
which is divisible by 5. Therefore § must contain both numbers, and we have the only
possible solution

S ={24,39,46,48} , T ={38,44,45)}

with sums 157 and 127, which you may check are both prime.

6. An old manuscript reads as follows: “...Having reached the island, walk from the
palm tree to the white rock, turn 90° right, and walk the same distance as you have
just walked (that is, from the tree to the rock). Place a peg in the ground. Return
to the palm tree, walk to the black rock, turn 90° left, and walk a distance equal to
that from the tree to the black rock. Place another peg in the ground. Dig for the

treasure half way between the pegs.” When you arrive, you find that the rocks are
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easily identifiable, but many more trees have grown up and it is impossible to tell
which one was meant. Can you find the treasure?
Solution,
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In the above diagram W and B represent the white and black rocks, P the palm tree,
Q and R the first and second pegs and T the location of the treasure. Thus it is given
that

PW=WQ, PB=BR, TR=TQ

and that /PWQ, ZPBR are right angles.

Draw the line WB, and to this line draw perpendiculars PE,QF,RG and TH as
shown. Depending on the exact location of P with respect to W and B, the order
of the points E, F,G and H may differ from the diagram (indeed, some of the points
may coincide, and it may be necessary to extend WB), but a similar proof will apply

in all cases.

In triangles APWE and AWQF we have
LPEW = [WFQ = 90°

and

(PWE = /PWQ — LEWQ =90° — ZFWQ = LWQF ;

also PW = W, so the two triangles are congruent. Similarly APBE is congruent
to ABRG. Hence

QF =WE, RG=EB and WF=PE =BG .
To locate T we first observe that
TH = }(QF + RG) = {(WE + EB) = {WB .

Also, since QT = RT and the lines QF, TH, RG are parallel, we have FH = GH.
Therefore

WH=WF+FH=BG+GH=BH.

Thus to locate the treasure you need only walk from the white rock halfway towards

the black rock, turn 90° left and walk a further distance equal to this, then get out

your spade and start digging!
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SENIOR DIVISION

1. Divide the numbers 24, 38,39, 44, 45, 46, 48 into two sets in such a way that the sum
of the numbers in each set is prime. Show that this can be done in only one way.
Solution. See question 5 in the Junior Division.

2. An old manuscript reads as follows: “.. -Having reached the island, walk from the
palm tree to the white rock, turn 90° right, and walk the same distance as you have
Just walked (that is, from the tree to the rock). Place a peg in the ground. Return
to the palm tree, walk to the black rock, turn 90° left, and walk a distance equal to
that from the tree to the black rock. Place another peg in the ground. Dig for the
treasure half way between the pegs.” When you arrive, you find that the rocks are
easily identifiable, but many more trees have grown up and it is impossible to tell
which one was meant. Can you find the treasure?

Solution. See question 6 in the Junior Division.

3. If @, b, ¢ are integers and
atbte=-1, o®+b®+c%=1993,

find the numerator when

is reduced to lowest terms.

Solution. Firstly,

__bc+ca+ab_%((a+b+c}2—{a2+bg+c2}) 996

abc abe abe '

+1 1
b+c

2|

The minus sign could be included either in the numerator or in the denominator; and
we need to find out what, if anything, can be cancelled from the numerator of +996.
Since a + b + ¢ is odd, either two or none of the numbers a, b, ¢ are even. Suppose
none is even. Then we can write
a® + b2 + % = (24 + 1) +(2B+1)% + (2C + 1)
=2+ B L "+ A+ B+ O+ 3,
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and so a? + b? + ¢? leaves remainder 3 when divided by 4. But this is impossible since
‘n fact 1993 leaves remainder 1 when divided by 4. Therefore two of the numbers
a, b, ¢ must be even, and we. can cancel 4 from the numerator and denominator of the
fraction, leaving +249 for the numerator.

Similarly, one of the three integers must be divisible by 3. For otherwise we would

have

A+ +E=(3A+1)+(3B+1)*+(3C£1)°
= 3(3A%2 +3B2 +3C* £ 24+ 2B +2C +1),
once again impossible since 1993 is not a multiple of 3. Therefore, cancelling 3, we

can reduce the numerator to £83. Finally,
a®? <1993 < 83% |

so 83 is not a factor of a (nor, similarly, of b or of ¢). Hence no further cancellation is
possible, and the fraction has been reduced to lowest terms. The numerator is £83.
If you would like to check this, you can find by trial and error that the possible values

of the fraction are

o e (YO FOTRRS ). o e T P I A _ B3 _ L o i 1l 33
36 21 16 1008 ° = et 57 and 33 T30 2= 765 °

A salesman travels round and round a circuit of n towns, where n > 2, spending
exactly one day at a time in each. From town 1 he travels to 2, from 2 to 3, and so on,
except that from town n he has the option of going to 1 as usual, or skipping 1 and
going immediately to 2. If you know this, and also know that he starts in fown 1 on
day 1, what is the first day on which the salesman’s location is completely unknown
to you, that is, the first day on which, as far as you know, he might be in any one of
the n towns? Prove your answer.

Solution. Imagine not one salesman but two travelling around the circuit. One travels
as slowly as possible, always going from town n to town 1; the other, as quickly as
possible, always going from town n to town 2. “Qur” salesman could be anywhere
between these two limits, and his location will be completely unknown when the fast

salesman has caught up to the town just behind the slow one. This will happen for
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the first time on day d (say), when the fast salesman has just skipped a town: that is,
when he is in town 2 and the slow traveller is in town 3. Now the slow traveller will

be in town 3 on day 3, and every n days thereafter, so
d=34zn

where z is the number of circuits made by the slow salesman. The fast salesman
completes a circuit in n — 1 days, and so d = 2 +y(n—1). Equating these expressions
and rearranging,

m=—zn=y+1,.

Therefore n is a factor of y+1, and for the smallest possible solution we take y=n-—1.
This yields d = 2 + (n — 1), So the first day on which the salesman could be in any
one of the n towns is day n? — 2n + 3.

. So much has Tom Black aged in appearance, it is hard to believe he is still under fifty.
I knew, though, that his recent illness would not have quenched his enthusiasm for a
puzzle, so [ said to him, “Tom, my favourite football team has played three times this
season. The total number of points scored in the three games 1s exactly equal to your
age, and the product of the three numbers is 1260. Can you work out the number
of points scored in each game?” He did a little calculating, but pronounced that he
was unable to decide between two possibilities. “Well,” said I, “one of the numbers is
greater than my age. If you know my age, that information will be enough to settle
the problem.” “As a matter of fact,” Tom replied, “I didn’t know your age. But I do
now.”

How old am I? (Ages are in whole years.)

Solution. Since Tom presumably knows his own age, we seek to express 1260 as
a product of three factors in two ways, such that the sum of the factors in each

expression is the same (and less than 50). By trial and error we find the following

four possibilities:
36+ 7+5=35+ 9+4=48,

35+ 64+6=30+14+3 =47,
21+104+6 =18+ 1445 =37,
18+10+7=15+14+6=35.
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Note that although we do not know which of the four possible sums is the correct one,
Tom does. (Hints for finding the factorisations: note that 1260 = 2x2x3xIxdxT
and that the largest of the three factors is less than 50. We easily see that 49,48,47,46
are not factors of 1260. Now 45 is a factor, but the total of all three factors will be at
least 45 + 7 + 4 which is too big. So we consider 44 and 43, give a brief glance at 42,
and so on until we reach 36, which yields the first triple given above.)

Now. how could the knowledge of “my” age help Tom to solve the problem? The only
answer is that he is thinking of two triples such that my age lies between the greatest
number in one triple and the greatest number in the other. For example, if Tom were
47 years old and I were 32, he could deduce that the scores were not 30,14,3 but
35, 6,6. However, Tom said that he did not at first know my age, but deduced it: he
could not have done so in the example just given, as the problem could have been
solved equally well had my age been 34 33,32,31 or 30.

The only situation in which Tom could have deduced my age is where there is only
one number that is less than the maximum number in one triple, but not less than the
maximum in the other; that is, where the two maximum numbers differ by 1. Thus
the first case is the correct one, and I am 35 years old. (And Tom is 48, and the scores
were 36,7,5.)

. Twenty one 3 x 1 rectangles are placed without overlapping on a normal 8 x 8 chess-
board, thus covering 63 of the 64 squares. Determine all possible locations of the
uncovered square.

Solution. Starting at the left-hand end, label the top row of the chessboard with
the numbers 1,2,3,1,2,3,1,2. Similarly, label the second row 2,3,1,2,3,1,2,3, the third
3.1,2,3,1,2,3,1, the fourth row in the same way as the first, the fifth in the same way
as the second and so on. It is easy to see that wherever a 3 x 1 rectangle is placed on
the board it must cover a 1, a 2 and a 3. But counting up all the figures we find that
1 and 3 oceur twenty-one times each while 2 occurs twenty-two times. Therefore the
uncovered square must contain the figure 2.

Now add some more labels to the chessboard: A.B.C.A.B,C,A B in the first column
(starting at the top), C,AB.C,AB,C,A in the second column, B.C,A,B,C,AB,C in

Continued p.36
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