Parabola Volume 29, Issue 2 (1993)

SOLUTIONS TO PROBLEMS 882-892

Q.882 A triangle is divided by one straight line into two parts which are similar to each

ANS.

Q.883

ANS.

other. Prove that the triangle is isosceles or right-angled (or both).

Clearly the line must pass through a vertex of the triangle, for otherwise the two
parts are a triangle and a quadrilateral, which certainly are not similar.

A Now (see diagram) since AABM and HDACM
are similar, one of the angles of AACM must
equal a. If this angle is not 3, then AACM has

B % \P - the two angles o and 8 adding up to 180°;

so the third angle must be zero, which is impossible. Thus a = 8 = 90°. Now
£LABM is equal to either ZACM or LMAC (or both, if ZABM — 45°); and
AABC is isosceles in the first case, right-angled in the second.

A number consists of the nine digits 1,2,...,9 once each (in some order). The

last digit is 5. Prove that the number is not a square.

Suppose the number is a square, say N?. Since N2 ends in 9, N must also end in
5. Let d be the tens digit of N, and M the number consisting of all the previous
digits of N: thus N = 100M + 10d + 5. Expanding the square and collecting

terms we have
N? = 1000(10M2 + 2Md + M)+ 100(d? + d) + 25.

Hence the last two digits of N2 are 25, and the hundreds digit equals the last
digit of d2 +d. Tryingd = 0,1,---.9 we find this digit to be 0, 2, 6,2,0,0,2,6,2.0
respectively. But under the conditions of the problem 0 and 2 are impossible, so
N2 ends in 625 and d = 2 or 7. Now let ¢ be the hundreds digit of N, and L the

previous digits, so that
N =1000L + 100c 4+ 25 or 1000L + 100¢ + 75.
In the first case we have

N* = 10000(100L? 4 20Lc + ¢ + 5L) + 1000(5¢) + 625.
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Q.884

ANS.

Q.885

ANS.

Thus the thousands digit of N7 is 0 if ¢ is even, 5 if ¢ is odd; but both of these
must be disallowed. Similarly, if N = 1000L + 100e 4+ 75 then

N2 = 10000(100L? + 20Lc + ¢* + 15L) + 1000(15¢ + 5) + 625

and the thousands digit is 5 if ¢ is even, 0 if ¢ is odd, which again is impossible.
So we have ruled out all possibilities, and we conclude that the number cannot

be a square.

Correct solution: Lisa Gotley, All Saints Anglican School, Merrimac, Queens-

land.

On a clock face, six adjacent numbers are left untouched and the other six are
rearranged so that all around the clock face, every pair of consecutive numbers

adds up to a prime number. What is the final arrangement of numbers?

Adding pairs of numbers all round the clock face gives the twelve sums
3,5,7,9,11,13,15,17,19,21, 23,13.

If six adjacent numbers are to be left untouched we must find five primes in
a row already in this sequence. The only possibility is 23,13,3,5,7; and so the
unchanged numbers are 11,12,1,2,3,4. We now rearrange the remaining six num-
bers: keeping in mind that obviously even and odd numbers must alternate, we

quickly arrive at the two solutions:

1,2.3,4,7,10,9,8,5,6,11,12
1,2.3,4,9,10,7,6,5,8,11,12.
Correct solution: Tammy Beshay, St. Patrick’s College.

Prove (without extensive calculations!) that

31 1000 1002 1004 1992 23

— < % X p B T e !
45 ~ 1001 1003 1005 1993 31

Note that for any n = 0,

7 {n—l—l
ndl w42
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Writing P for the given product, we have

1000 1000 1002 1002 1992 1992
P? = X X X X ooe X e X
1001 1001 * 1003 ~ 1003 1993 1993
1000 i 1001 3 1002 " 1003 o 1992 . 1993
1001 1002 ~ 1003 ~ 1004 1993 1994
1000
1994

since almost everything cancels. The job can now be finished by calculator, or

more elegantly

pr o 1000 500 529 _ (23)?
1994 997 T 961 ~ \ 31

Similarly
prs 999 1000 . 1001 L 1002 1991 . 1992
1000 © 1001 ~ 1002 ~ 1003 1992 © 1993
_ 99 _ 961 _ 31\’
T 1998 7 2025 \a5/
Hence
31 95
—<cPc=,
P ]

Find three prime numbers a, b, ¢, all different, such that

a® + 37ab = ¢* + 1656,

Can ¢ equal 27 If so, then
a(a + 37b) = 1664 = 27 x 13.

Since a is prime and a # ¢, we have a = 13, a + 37h = 128; but this cannot be,
since b is an integer. Hence ¢ is odd. Since the product of @ and a + 37 is odd,
each factor must be odd; so their diference 37b is even; so b is even. The only

even prime is 2. Substituting b = 2 into the original equation,

a® +7da = 3 + 1656;
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ANS.

rearranging and then factorising a quadratic, we get
(a—18)(a+92) = c*.

Now since ¢ is prime, ¢* has only two factorisations as a product of two numbers,

c3=1><03=c><c2.

Clearly @ — 18 is the smaller factor, so we have
a—-18=1,a+92=¢"

or

a—18=c¢, a+92=c.

The first of these gives ¢® = 111 which is impossible, while the second yields the

quadratic ¢? = ¢ + 110 and leads to the unique solution

Very good solution: Lisa Gotley, All Saints Anglican School, Merrimac, Queens-
land.

Last year was a busy one for my family, with six of my brothers and sisters having
children. Writing myself a timetable for buying niecely and nephewly birthday
presents, I noticed some odd facts about the six dates. The difference (in days)
between two consecutive birthdays was always the same, and this difference was
a prime number. No two children were born in consecutive months, and no two
were born on the same date in different months. One of the birthdays was on

August 8. When were the others?

Let n be the number of days difference between each birthday and the previous
one. Since there are six birthdays, with one in August and no two in consecutive
months, there must be one in October and one in December. Thus a gap of 2n

days must be at least from August 8 to December 1 (115 days), and at most from
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August 8 to December 31 (145 days). Hence (remembering that n is a whole

number)

58 <n <72

As n is prime we have the four possibilities n = 59, 61,67 or 71, Now we need to
calculate intervals of n days each side of August 8 and see which n give admissible
answers. A convenient way to do this is to count the days of all months from

January to July,
31+ 28 +31 430 + 31 4 30 + 31 = 212,
to see that August 8 is the 220th day of the year. So if n = 59 we consider days
43,102,161, 220,279, 338:
by a similar method to that above, these days are
Feb 12, Apr 12, Jun 10, Aug 8, Oct 6, Dec 4.

But this is not allowed since a birthday would fall on the same date in both

February and April. Trying n = 61,67, 71 gives respectively

Feb 6, Apr 8, Jun 8, Aug 8, Oct 8, Dec 8;
Jan 19, Mar 27, Jun 2, Aug 8, Oct 14, Dec 20;
Jan T, Mar 19, May 29, Aug 8, Oct 18, Dec 28;
of which the first must be discarded. So, two solutions? ... well, if you read

the question carefully, I said that all this happened last year, so we should have
counted not 28 but 29 days for February! Repeating the working, we find the
values of n unchanged, and the birthdays corresponding to n = 59, 61, 67, 71 are

Feb 13, Apr 12, Jun 10, Aug 8, Oct 6, Dec 4;
Feb 7, Apr §, Jun 8, Aug 8, Oct 8, Dec 8;
Jan 20, Mar 27, Jun 2, Aug 8, Oct 14, Dec 20;

Jan 8, Mar 19, May29, Aug 8, Oct 18, Dec 28.

Only the first is a solution to the problem. (By the way, if the given birthday
had been August 7, the above dates would have been shifted back one day; but
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ANS.

this would also have opened up the possibility that n = 73 and given a second

solution: Jan 1, Mar 14, May 26, Aug 7, Oct 19, Dec 31 - just made it!)

Alexander, David, Esther, Jacinda and Simon all received different marks in the
maths test which was held unexpectedly last week. In the following, students
who made correct statements invariably had obtained higher marks than those

who made incorrect statements.

Simon: Alexander and Esther gained the top two places.
Jacinda: No, what Simon just said is wrong.
David: I was ranked in between Simon and Jacinda.

Alexander: Jacinda came second.
Jacinda: I scored fewer marks than Esther.

Esther: Exactly three of the previous five statements are correct.
Find the order in which the students finished.

Suppose that Simon’s statement is correct. Then Alexander came higher up
the list than Simon and therefore must also have spoken correctly. But this is
impossible since it would mean that Alexander, Esther and Jacinda each occupy
one of the top two places. Thus Simon must have been wrong. This means that
Jacinda’s first statement is true, and so her second statement must be true too.
Thus Esther came ahead of Jacinda. To summarise what we know so far, (part
of) the order of marks is
... Esther ... Jacinda ... Simon ...
and Jacinda made two correct statements, Simon one incorrect statement. Since
three of the first five staternents are true, we see that of Alexander’s and David’s
remarks one is true and one false. If David was correct and Alexander incorrect,
then David came below Jacinda, and so did Alexander (since his statement was
false); thus Jacinda came second and Alexander’s statement was true after all.
Thus David must have made a false statement and finished last, while Alexander
made a true statement and came third. So the order (top down) was
Esther, Jacinda, Alexander, Simon, David.

Partial solution: Lisa Gotley, All Saints Anglican School, Merrimac, Qld.
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Q.889 Find all positive integers m such that if
(1993 + m)'?%

is expanded by the Binomial Theorem, two adjacent terms are equal.

ANS. The kth and (k + 1)th terms in the expansion are equal when

1993 k.__1993—k _ 1993 k41 __1993—k—1
( i )1993m _(k+1)1993 m z

that is,

19931 m 1993! . g
——lE R 993 +1,_ 1992 k_
FI(1903 —F)! OB™ ( + 111992 — k)1 © =
After much cancellation this becomes

m_ 1993
1993 -k k+1

which can be rearranged to give
(m + 1993)k = 1993% — m;

hence

(m +1993)(k + 1) = 1993% + 1993 = 1994 x 1993

= 2 x 997 x 1993,
where 2, 997 and 1993 are all prime. Thus m + 1993 is a factor of 2 x 997 x 1993,

and clearly m + 1993 > 1994. There are eight factors, of which 1,2, 997 and

1993 are rejected as too small, leaving four solutions
m+ 1993 =2 x 997, 2 x 1993, 997 x 1993 or 2 x 997 x 1993,

that is,
m =1, 1993, 1985028 or 3972049,

Q.890 If n is a positive integer, we define N(n) to be the number of ways of writing

n=uxg+ 2z +2%z9 + %25 + .-
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where zq,2,... may take the values 0,1,2 or 3. For example, N(9) = 5 since
9=1+(2x0)+(22x0)+(2° x1)
=1+(2x0)+(2*x2)
=1+(2x2)+(2* x1)
=34+(2x1)+(22x1)
=3+(2x3)

are the five ways of writing 9 in the given form. Find a formula giving N (n) in

terms of n.

ANS. Experimenting a bit first, we find
1.=1
2=0+(2x1)=2
3=14+(2x1)=3
4=0+(2x0)+(22x1)=0+(2x2)=2+(2x1)
5=1+2x0+(2?x1)=14+(2x2)=3+(2x1),

so that
N(1)=1, N(2) =2, N{(3)=12, N(4)=3, N(5) =3.

A reasonable guess would be

N(n) =

3 (n+2) ifniseven
(*)

1(n+1) ifnisodd

We shall prove this by an extended version of mathematical induction. For the
basis step, we have already seen that the formula is true for n = 1,2 and 3 (and
more!) Before going on to the inductive step we note the following. Let n be an

even number, n = 2k, with k > 2. If

n=2k=gzg+ 2+ 22,4~
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Q.891

then 29 = 0 or 2. If 24 = 0 then
E=zy 422+ 2223 4.,
while if 2y = 2 then
k—1=x, 422+ 2225 +---

So the number of ways of writing 2k is the number of ways of writing k, plus the

number of ways of writing k — 1. That is,
N@E2k)=N(k)+ Nk-1) if k>2.
Similarly, if n = 2k + 1 is odd, then 2o = 1 or 3 and we find
N(2k+1)=N(k)+ N(k—-1) if k>2.

Now we proceed with the inductive step. Assume that (%) is true for all values of

n less than some even number 2k, where k > 2. Then

N(2k) = N(k) + N(k - 1)

%(k+2]+§lk if k is even
%(k+1)+%{k+l} if k is odd
= 1(2k + 2),

0 (¥) is true for n = 2k. Also
N(2k+1)= N2k) =12k +2) = 2((2k +1) 4+ 1)

which shows that () is true for n = 2k + 1. This completes the proof.

(A bit more explanation on this kind of induction: we knew early on that
the formula is true for n < 4. Then the inductive step shows that it is true for
the next two values of n as well, that is, for n < 6. Using the inductive step again

verifies the result for n < 8, and so forth.)

Andrew is given a bag of lollies by his parents and told to share them with

his little sister Becky. The number of lollies in the bag is not known, but is
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ANS.

somewhere from 1 to 100. Being just a little bit greedy, Andrew shares out the
lollies according to the scheme “one for you, two for me, three for you, four for
me, ... " Any leftover lollies at the end go to the person who would have received
them anyway. Thus if there are eleven lollies, then Becky gets one, Andrew gets
two, Becky gets three, Andrew gets four, and Becky gets the last one. After all

the lollies are shared out, how far ahead, on average, can Andrew expect to be?

If there is one lolly in the bag, Becky gets it and Andrew’s advantage is —1. If
there are two, the children receive one each and Andrew’s advantage is 0. If the
bag contains a third lolly, Andrew gets it and his advantage is now +1. Continuing
in this way, if there are 1,2,...,100 lollies in the bag, Andrew’s advantage will

be respectively
-1,0,1,0,-1,-2,-1,0,1,2,...,2.

(Note the pattern here: the list starts with —1, then increases twice, decreases
three times, increases four times and so on.) To find out how far ahead Andrew
can expect to be on average we must add up all these numbers and divide by 100.
A relatively easy way to do this is to split the list into groups of 1,5 8018
numbers, with an “incomplete” fourteenth group consisting of the remaining nine

numbers, and then add each group:

P |
0+1=1
BT i 58

i W
T T O (e

—2-140414+24+3=3
-6-5—-4—3-2-14+0+14+2=-18.

The sum of the first thirteen groups is

~1+1-34+2-543-T7T+4-9+5-114+6-13=-28;
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adding the incomplete group and dividing by 100, Andrew’s expected advantage
18

(—28 — 18)/100 = —0.46.

In other words Andrew should expect to end up behind by about half a lolly!
The explanation for this is that Andrew’s extra lolly per “round” is more than
outweighed by Becky's expectation of receiving the leftover lollies at the end.
An alternative method would be, using a similar process to the above, to
calculate the total number of lollies each child will receive on average. If you
do this you will find the result Andrew 25.02, Becky 25.48, which confirms the

difference calculated above.

Q.892 A certain race of beings lives on two planets. Each nation owns one connected
piece of territory on each planet. It is desired to colour a map (pair of maps?) of
the two planets according to two rules. First, two countries with a common border
must bear different colours; second, each nation must have its two territories (one
on each planet) coloured with the same colour.

(1) Find an example of a pair of maps which requires eight colours.

(i) (Probably difficult.) Can you find an example where nine colours are needed?

ANS. (i) A bit of experimentation, inspired by the four-country configuration given last

issue, leads to one possible pair of maps as shown.
Flaa
o
3
5 d
The numbers represent the different nations. It is easy to check that any one

of the eight countries has a border with each of the other seven. For example,

country 7 shares borders with 2,4,5 and 6 on planet A, and with 1,3.6 (again) and
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8 on planet B. Therefore no two countries may use the same colour, and eight
colours are needed.

(ii) T haven’t found any pair of maps where nine colours are necessary. How-
ever my source of information says that such maps can be produced; and that
on the other hand, twelve colours are enough to solve the problem for any given

maps. If you can find out anything about this please write to us!

Continued from p.24
Q.901 In the mythical country of Ozz there are three kinds of coins: in order of increasing
value the cong, the dong and the fong. Two Ozzians, Alice and Bert, each with
his or her own pile of congs, dongs and fongs, play the following game. Alice
chooses any one of her coins, whereupon Bert must take from his pile one each of
the other two kinds. They then toss the three coins and add up the value of those
which fall heads: the player whose total is greater takes all three coins. There are
no ties except when all three coins turn up tails, in which case each player keeps
his or her coin(s). Alice and Bert notice that in the long run neither player has
any advantage, regardless of which coin Alice selects. How many congs are in a

fong?

Q.902 Given three non-collinear points X,Y,Z such that /XY Z is obtuse, show how
to construct a triangle AABC such that the median of the triangle through
A intersects the circumcircle at X, the angle bisector through A intersects the

circumecircle at ¥, and the altitude through A intersects the eircumcircle at Z.

Continued from p.22
the third, the fourth the same as the first and so on. (Note that the second and
third columns may not be in quite the order you expect!) As above, the letter A
oceurs once more than B and C. Therefore the uncovered square must be one of those
labelled 2A. See the first diagram below. To show that it is actually possible to place
the twenty-one rectangles in the manner required we can produce the solution in the

second diagram.

1a[2C[3B[1A]2C[3B[142C
2B[3A[1C[2B[3A[1C[2B[3A
3C|1BZA]3C[1B#43C|1B
1A[2C|3B[1A[2C[3B[1A]2C
2B[3A|1C|2B[3A[1C[2B|3A
3C[1BIA3C| 1 BZA3C 1B
1A[2C[3B[1A[2C|3B[1A[2C
2B[3A[1C[2B[3A[1C|2B|3A




