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MATHEMATICS AND PIGEON HOLES

John Dixon*

Before reading the rest of this article try to prove the following statements.

(1) If a drawer contains a large number of socks of the same colour but of two different

sizes, and I take out three socks, then two of these will make a pair.

(2) If a school has 750 students there is at least one day of the year when three (or more)
students all have their birthday.

(3) There are two people in Sydney who (i) were born in the same year; (ii) have the
same height (within one tenth of a millimetre); and (iii) have the same weight (within

a kilogram).

(4) In any party of n persons we can always find two people who have shaken hands with-

the same number of other people in the party.

(5) If ty,t2,- - ,t10 are any ten integers, then there are some values of i and j with 1 <

i <j <10 such that 10 divides t; +ti41 +--- F t; exactly.

If you have succeeded in proving the five statements above, then you will probably
have discovered that there is a basic similarity in their proofs. This similarity can be

formalized to what is known as the Pigeon Hole Principle (PHP) of Dirichlet:

If we have m objects distributed among n boxes (“pigeon holes™) then at least one
box has at least m/n objects in it. In particular, if we have n objects in n boxes, and no

box has two objects in it, then each box has exactly one object in it.

This simple and almost trivial observation has many far reaching applications in math-
ematics. It turns out to be the core of the proof of many useful and important theorems.

The rest of this article is devoted to some simple examples.

We shall first see how the PHP proves (5). Put so =0, 51 = t1, s2 = ty+1t2, -, 810 =

$; +ts 4 - - t10. After division by 10, each s; will have remainder r; with 0 <r; < 9. Now
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put the 11 different ¢; into 10 “boxes” labelled 0,1, 2, - - - 9 where s; goes into box j if r; = 3.
By the PHP, there are two s; in one of the boxes. Thus we may suppose that s, and s,,
say, with m < n, both lie in box k. That is, the remainders r,, and r, both equal k. Then

10 divides 54, — 5; = tmy1 Ftme2 + -+ + tp.
Similarly, we have

(6) If p is a prime number, and n is any integer not divisible by p, then there is an integer

m with 1 < m < p— 1 such that p divides mn — 1.

To prove this consider the p — 1 numbers n,2n,3n,:--,(p — 1)n. Since p does not
divide i or n, p does not divide ni. Therefore the remainder r; left after ni is divided by
p is one of the p — 1 numbers j = 1,2,---,p — 1. We also notice that if r; = rg, then p
divides ni — nk = n(i — k). Since p does not divide n, p must divide (i — k). But ¢ and
k lie between 1 and p — 1, so their difference is less than p. Therefore : — k equals 0.p,
i.e. ¢+ = k. This shows that all the remainders r; are different. If we put nt into a “box”
labelled j when r; = j, then we have p — 1 objects (the ni) in p — 1 boxes, and at most
one object lies in each box. Therefore the PHP shows that each box contains exactly one

object. In particular, r,,, = 1 for some m, and then p divides mn — 1.

You will have noticed that the PHP can tell us that something exists (such as the
integer m in (6)), but it gives us no help in finding it. For this reason, proofs using the PHP

are often referred to as existence proofs in contrast to proofs which are constructive.

I conclude with an important “approximation” theorem which tells us that we can

approximate any real number quite closely by a rational number. Try to prove it using the
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Let  be any real number and N be any integer > 1. Then there exists a rational
number p/q (with p and ¢ integers and 0 < ¢ < N) such that the difference |z — p/q|
is less than 1/Ng¢. (For example, if 2 = 7 and N = 10, we can take p/¢ = 22/7. Then
I — 22/7] < 1/70).
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