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THE CYCLOID: “THE HELEN OF GEOMETERS”
David Tacon

Consider a fixed reflector R on the rim of a bicycle wheel of radius r. If the wheel rolls
along a straight line without slipping the reflector R traces out a curve called a cycloid.
Probably the cycloid has caught your attention when you have observed some cyclist riding

along at night. It was named by Galileo Galilei (1564-1642) after the Greek word meaning

circle.

Figure 1

Indeed the history of the curve really only dates back to the time of Galileo. What
is of interest to us however is the contents of a letter that Galileo wrote to his friend

Bonaventura Cavalieri (1598-1647) in 1640. Galileo wrote:

“More than fifty years ago the curved line came to my mind and I wanted to describe
it, admiring it because of its gracious curvature, adaptable to the arches of a bridge. I
made several tentative calculations on it and on the space comprised between it and its
chord, in order to demonstrate some property. And it seemed at first that such space

may be three times the circle which it describes, but it was not that.”

In fact Galileo’s first hunch about the area was correct and the proof of this fact is
what we primarily wish to discuss here. As part of our story it is interesting to note that
in about 1630 the French monk Marin Mersenne (1588-1648) suggested using the cycloid
as a test curve for the different methods of dealing with areas via “infinitesimals”. We
need keep in mind here that we are speaking pre-Newton and the development of the

Calculus so a straightforward integration was out of the question. In fact in Mersenne's

14



time no scientific journals existed and Mersenne fulfilled a central role in the history of
mathematics as a skilled communicator and disseminator of knowledge. Mersenne played
this role admirably since he could understand new discoveries quickly and could pose
questions clearly and well. (He also had great moral character so that his several hundred
correspondents trusted him.) In any case the cycloid became one of the most discussed
curves of the period and generated much acrimony and jealousy so that it became known
as “the Helen of geometers” (after Helen of Troy). Among those who took up Mersenne’s
challenge were Gilles Personne de Roberval (1602-1675) and Evangelista Torricell; (1608-
1647). By 1634 Roberval was able to prove Galileo’s earlier hunch but he did not publish his
proof. On the other hand Torricelli seems to have independently found two proofs in 1643
and he published these the next year. Torricelli did not state in his article that Roberval
had proved the result earlier and Roberval wrote to Torricelli accusing him of plagiarism.
It’s amusing now to realize why Roberval did not publish his proof. Roberval was professor
of mathematics in Paris at the College Royal (now Collége de France) and managed to
hold this post for some forty years. Appointment to this position was determined every
three years on the basis of a competitive examination, the questions of which were set by
the incumbent. In 1634 Roberval won this contest probably because of the method he had
developed to handle the cycloid. By not disclosing his method to others he successfully
retained his position until his death but this meant he lost credit for most of his discoveries
and he became embroiled in numerous quarrels with respect to priority.

The key to Roberval’s proof was to introduce a second curve called the companion

of the cycloid.
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Imagine the reflector initially at the bottom of the wheel at the origin 0 and imagine
that the wheel completes one half a revolution when it rolls along OC so that the reflector
eventually reaches D (see Figure 2). As the wheel rolls along OC the reflector moves to a
generic position R where, since there is no slipping, 0OA = arc AR. From R draw a line
parallel to OC to meet the vertical diameter AB at R'. As R traces out the cycloid from

0 to D the point R' traces out a curve from 0 to D called the companion of the cycloid.

Roberval’s insight was now to observe that the area between the cycloid and its com-
panion is exactly one half the area of the wheel. Why is this the case? Consider the wheel
in some fixed position and the cycloid and its companion as shown in Figure 3. Roberval,
Iike other mathematicians of his period, thought of areas as sums of lines (of infinitesimal
thickness). So the curved region ORDR'O has area equal fo the sum of all the lines RR'
(as R moves from 0 to D). But, for a given point R on the cycloid the corresponding point
B’ is on the vertical diameter of the wheel. Thus we can shift RR' to the fixed wheel as
shown in the figure. This means that the area of the semi-circle ARB is also the sum of
the lines RR'. In other words the area between the cycloid and its compa.nion is one half
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Next Roberval observed that the companion curve divides the rectangle OCDS into
two equal areas. To see this consider a general line XY perpendicular to OC at X which
meets the companion curve at ¥ (see Figure 4). This line XY has the same length as the
corresponding line X'Y", drawn perpendicular to SD at X' where DX' = OX. (Prove this

as an exercise. )

Therefore, area OCDR'O = sum XY ’s = sum X'VY"'s = area OR'DSO.

This means area OCDR'O = 7 area rectangle OCDS.

But OC = nr = % circumnference of wheel and 05 = 2r = diameter of wheel.

Therefore, area OCDR'O = %m- X 2r = wre.

; ; | 3
This means that the area under the cycloid (and above OC) is Em*z + wr? = =

o=

Therefore the area between the (full arch of the) cycloid and its base is 37r? or three times

the area of the generating wheel as divined by Galileo.

Certainly Roberval’s proof reveals great insight and makes it very clear that the result
is true. Nevertheless the proof is open to serious criticism. It does not make much sense
to say that an area is a sum of lines since the area of a line presumable is zero (since it

has zero width) and a sum of zeros is still zero.

How might we write down a modern proof of Galileo’s inspired guess? (What we now

do will make sense only if you have studied integration at school.)
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Let the reflector R have coordinates (z,y). We know from integration theory that if

we can solve for ¥ in terms of = then the area is

2xr
f y dz.
0

Rather than try to obtain y explicitly in terms of r we just find parametric equations for
= and y. The parameter # that we use is the angle between the radius vector RG and the
perpendicular GA as defined in the diagram (see Figure 5). As the wheel rolls along in
the positive direction # increases from 0 (when the reflector R is at the origin), to © (when
R is at the top of its arch) to 2r (when R has returned to the base line once more). We

clearly have:

t=0A—-RR' = arc RA— RR' =rf —rsinf = r(8 — sinf)
y=GA—GR =r —rcosf =r(l —cosf).
Hence the area is

2mr 2m dr 2w
f y de= f y(0)—df = / r(1 — cos8)r(1 — cos 8)dd
0 0 de 0
2w
= r? / (1 —cos@)r(1l — cos8)dd
0
2
=r? (1 —2cosf + cos’ 6)df = 3nr>.
0
Unfortunately this parametric description of the cycloid reveals its companion to be
little more than a sine curve, The point R’ has coordinates z = r#, y = r(1 — cos#) so
; x " s T
that, putting = =, we have an explicit description as y = r(1 — cos :} ory=1—cosz
T

in the special case when = =r.

Nevertheless the cycloid does possess three other remarkable and surprising properties.
To understand these results let us consider an “upside down cycloid’ with cusp or vertex

at O' as shown in Figure 6.
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Figure 6

The first two of these properties were discovered by Christiaan Huygens ( 1629-1695)
who was one of Galileo’s immediate scientific SuCCessors.

The tautochrone property. Imagine the cycloid of Figure 6 as a smooth wire
placed in a vertical plane and imagine a bead free to move under gravity on that wire (we
disregard friction). Then the time of descent of the bead to the lowest point on the cycloid
does not depend on the position from which the bead is released.

The isochrone property. Suppose that, instead of sliding on the cycloid, the bead
is attached to the vertex Q' by a light string constrained to move between the cycloidal
arcs O'P and 0'Q. Then the period of oscillation of the pendulum (of given length) is
independent of the amplitude of its swing. (Those readers doing 4 Unit Mathematjcs
might be aware that this result is approximately true, for small amplitudes, for ordinary
simple pendulums. Huygens tried to exploit his cycloidal pendulum to design an accurate
mariner’s chronometer which was crucial for measuring longitude. In 1735 John Harrison
succeeded in making such a chronometer using a spring clock with a balance wheel. )

Huygen's discoveries of 1673 were followed in 1697 by an equally beautiful discovery

made independently (and by different methods) by Johann Bernouilli (1667-1748) and his
older brother Jakob ( 1654-1705).
The brachystochrone property. Consider a point 4 and a second lower point B not
directly beneath A, and consider all curves from A to B down which a bead can slide
under gravity. Then the curve which minimises the time taken to slide from A to B is the
cycloid with A as vertex which passes through B.

We might consider these properties in more detail in a future article.
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