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Q.893

ANS.

Q.894

ANS.

SOLUTIONS TO PROBLEMS 893-902

Find all positive integer solutions of

2° — 84 = 6y + 3z — 2ay.

Rearranging the equation and factorising we have
(x+2y)(z = 3) = 84.

To save work notice that if 242y is odd then z is odd and z —3 is even; conversely,
if z + 2y is even then z — 3 is odd. So we factorise 84 as the product of an odd

and an even integer:
84 =84x1=28x3=21x4=12x7T.

Clearly & — 3 is the smaller factor. So the solutions are as follows.

T 4 6 T 10
y 40 11 7 1

Solved by: Lisa Gotley, All Saints Anglican School, Merrimac, Qld.
B. David, North Bondi, NSW.

A six-digit number was divided by a three-digit number, giving a three-digit
quotient and no remainder. In the working, every even digit (0,2,4,6, 8) was
replaced by an E, while every odd digit (1,3,5, 7,9) was replaced by an O. Given

the result shown below, reconstruct the working. No number begins with a zero.
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Let d be the divisor, g the quotient. Looking at the first subtraction in the

calculation, d has a multiple of the form EEEQ, which must be at least 2001;
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therefore 9d > 2001. Likewise, d has a multiple EOE which is not equal to d itself

and is at most 898; so 2d < 898, Hence
223 < d < 449;

but since d has the form OEO we can improve this to
301 < d < 389,

Now observe that in the last and second last subtractions, two different multiples
of d were subtracted from two (possibly different) numbers EOE. But such a
number is at most §98, which is less than 3d, so the last two digits of ¢ must he
12, This allows us to restrict the values of d still further. We have 602 < 2d < T78;

but 2d has digits EOE, so 610 < 2d < 698 and
3056 < d < 349,

To improve this once more we notice that the second subtraction is EOE —d =

EO, where EO are the first two digits of 2d: therefore
d= EOE - EO =410 - 69 = 341.

Now we can determine the first digit of g¢: it is odd, and multiplied by d gives a
result EEEQ. But obviously d, 3d, 5d < 2000; and 3069 < 9d < 3141; so to give a
four-digit product beginning with an even number, the required digit must be 7.
Hence ¢ = 712 and we have five possibilities for d. If d = 341 or 343 then 2d is
EEE, which is not so; if d = 345 then Td is EEQQ; while if d = 349 we find that
dq is EEEEEE, whereas it should be EEOEEE. Hence the only valid solution is
given by d = 347, ¢ = T12.
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Q.895

ANS.

Q.896

Take a normal 8 % 8 chessboard and remove from it as few as possible individual
squares, in such a way that no 3 x 1 rectangle can be placed so as to cover three

squares on the remaining part of the board.

Label the chesshoard with the numbers 1,2,3 as described in the Mathematics
Competition solutions (Parabola issue 2, p.22). Then any 3 x 1 rectangle placed
on the board must cover a 1, a 2 and a 3, and the figure 1 occurs twenty-one
times. So by removing all the squares labelled 1 we make it impossible to place a
3 x 1 rectangle on the board. However, removing fewer than twenty-one squares
will not do. To see this, consider the diagram on p.36 of the previous issue of
Parabola. Here the board contains twenty-one 3 x 1 rectangles; so if only twenty
or fewer squares are removed, at least one complete rectangle must remain. So
the fewest possible number of squares that we may remove is twenty-one: one

possibility is as shown below.

(Adapted from a puzzle heard on ABC radio.) Take a square-based pyramid
whose triangular faces are all equilateral, and a regular tetrahedron whose faces
are of the same size as the triangular faces of the pyramid. Join these two solids
along a pair of triangular faces. In the combined solid you will see two triangles
which appear to lie very nearly in the same plane. Do they in fact lie exactly in

the same plane? Prove your answer.
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ANS.  Yes, the two faces do lie in exactly the same plane. To see this, place tuo

pyramids as shown in the diagram: the bases are coplanar and two edges meet.

S
Draw the interval AB joining the summits of the pyramids. Then it is clear
that ABCD is a tetrahedron with one of its faces attached to a face of (say)
the left-hand pyramid; it is also clear that faces ASC and ABC (and BCT) are
coplanar; what remains is to prove that the tetrahedron ABCD is regular. But
AC,AD,CD,BC and BD are sides of congruent equilateral triangles (given),
while AB = MN = 2MP and MP is half of DC, the side of the base of the
pyramid. Hence ABCD is a regular tetrahedron.

Q.897 Let = = V10 + ¥/6. Show that z¥ — 3z /60 = 16, and deduce (without a

calculator!) that = < 4.

ANS. We have
z* = (V10)? + 3(V10)*(V6) + 3(V10)(V6)? + (V6)°
=10 + 3(V10)(V/6)(¥10 + ¥/6) + 6
= 16 + 32 /60,

which proves the first part. If z > 4 then, noting that ¢/60 < ¥/64 = 4, we have
16 = z(z% — 37/60) > 4 x (16 — 12),

that is, 16 > 16. This is obviously not true, so z < 4. (In fact a calculator gives

z=3.9715...)

Solved by: Lisa Gotley, All Saints Anglican School, Merrimae, Qld.
B. David, North Bondi, NSW,
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Q.898

ANS.

A pentagon with all its diagonals drawn in has a coin placed on each intersection

of lines. with either heads or tails facing upwards (sce the diagram).

T

VN

It is permitted to select any one of the ten lines in the figure, and turn over all

the coins lying on that line; such a move may be performed as often as you like.

(1)

(i)

(1)

Find a sequence of moves starting with the above position and finishing with
all coins facing up heads.
Find a rule by which it is possible to tell merely by studying any initial

position whether or not the task in (i) can be accomplished.

This can be achieved by turning over the coins on lines 2,3,6 and 7 (see
diagram). The lines can be treated in any order, but there is no solution in

fewer than four moves, and no other solution (I think) in just four.

Note that any allowable move flips two coins in the outer “ring” of five.
Thus any move increases or decreases the number of tails among these coins
by two. or (if the coins affected were originally a head and a tail) leaves it
unchanged. Since our aim is to reduce the number of tails to zero, we must
start with an even number of tails in the outer ring. Likewise, any move

affects either two coins in the inner ring or none, and we must start also
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Q.899

ANS.

(i)

(if)

(ii)

with au even number of tails in the inner ring if we are to have any chance
of success.

It the above conditions are met. does this guarantee that the problem is
solvable? Yes, for we ean obey the following procedure. If either of the
“inner” coins on line 6 is rails we Hip line 6: then if either “inner” eoin on
line 7 is tails we flip line 7: and similarly for lines 8 and 9. We then have
four heads on the inner ring, and since we started with an even number of
tails and changed none or two every move, the fifth coin must be heads too.

We can now finish the game by treating lines 1,2,3.4 in a similar way.

We have seven coins, apparently identical, of which two are heavier than the
other five (and the two heavy coins weigh the same as each other). With
three weighings on a beam balance, find the heavy coins.

Show that the above problem cannot be solved if we have eight coins, with

two heavier than the other six.

Label the coins 1,2,...,7. One possible method is the following:
(1) weigh 1.2 against 3,4:
(2) weigh 1,4 against 5.6:

(3) weigh 1,3,5 against 2.486.

We can now work out the results of the weighings for a given pair of heavy
coins. If, for example, coins 1 and O are heavy, then the first weighing tips to
the left, the second balances, and the third again tips to the left. Considering
in this way all possible pairs, we find that each gives a different set of results
for the three weighings, and so these results will determine which two coins
are in fact the heavy ones,

Each weighing will give one of three results (left, right or balance). Therefore
the total number of results that can arise from a sequence of three weighings
i83x3x3 =27 If we have eight coins there are 3 (8 x 7), that is, 28
possibilities for the heavy pair. Hence, if we weigh the coins by any procedure

whatsoever, there must be two possibilities which give the same result and
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therefore cannot be distinguished.

Q.900 Consider the binomial expansion of (z + 1)".
(i) If the expansion contains three consecutive coefficients such that the second
and third are (respectively) twice and three times the first, find n.
(ii) If it contains three consecutive coefficients such that the second and third
are respectively a times and 23 times the first, where a is an integer. find a

and n.

ANS. (i) We have

(ha)=23) = (132)=3(5)-3(3):

where (?) is the first of the three binomial coefficients. Using the formula

(3) - mom

and doing a lot of cancellation, we find
n—-j=2j+1), 2n—j-1)=3(+2)

Simplifying,
n=3+2 2n=>5+8.

Finally, taking three times the second equation minus five times the first
yields the solution n = 14. We can check this result by noting that j = 4 and

the three binomial coefficients are

14 14 14
(4) = 1001, (5 ) = 2002, (6 ) = 3003.

(ii) In the same way we get

n=(a+1)) +a, an = (a + 23)j + (a +46).
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Q.901

We can solve for n as above, but the algebra is a little easier if we solve for i
instead, Taking a times the first equation minus the second and rearranging

leads to
. a®—a—46
)= a? — 23

Note that j > 0, so one of the expressions a? — a — 46 and a? — 23 must be

positive, the other negative. But clearly a? — 23 is the larger, so we have
a®-23>0, a*—-a-46<0

and hence, remembering that a is an integer, 5 < a < 7. Of these, only a = 5
gives an integer value for j, namely j = 13; we then find n = 83. If you are

willing to do a little (?) arithmetic you can check that

( ) = 528055739755020,
( ) — 2644778698775100,
( ) 12165982014365460

and that the second and third of these are in fact 5 and 23 times the first.
Solved by: B. David, North Bondi, NSW.

In the mythical country of Ozz there are three kinds of coins: in order of increas.
ing value the cong, the dong and the fong. Two Ozzians, Alice and Bert, each
with his or her own pile of congs, dongs and fongs, play the following game. Alice
chooses any one of her coins, whereupon Bert must take from his pile one each of
the other two kinds. They then toss the three coins and add up the value of those
which fall heads; the player whose total is greater takes all three coins. There are
no ties except when all three coins turn up tails, in which case each player keeps
his or her coin(s). Alice and Bert notice that in the long run neither player has
any advantage, regardless of which coin Alice selects. How many congs are in a

fong?
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ANS.

Let the value of a cong, a dong and a fong be ¢,d and f respectively, and note
that ¢ < d < f. Consider the case where Alice chooses a cong. There are eight
ways in which the coins can fall. If they all fall tails, the game is drawn and
neither player wins anything. There is one case (the cong falls heads, the other
two tails) in which Alice wins d + f, and six cases (all the others) in which Bert
wins ¢. So on average, in any seven games, Alice wins d + f and Bert wins Ge.
But since neither player has an advantage these amounts must be equal: that is,
d+ f =6c, or

6c—d—f=0. (1)

If Alice chooses a dong we can analyse the game similarly (she has two ways of
winning: the dong must fall heads and the fong tails, but the cong may be either)

to obtain the equation
2c—56d+2f =0. (2)

Now suppose Alice chooses a fong. Since no tie is possible other than “all tails”,
f cannot equal ¢ + d. We must consider the cases f<c+dand f >c+d. In
the former, Alice may win in any of three ways: the fong must fall heads, and
the cong and dong must be tails and tails, heads and tails or tails and heads

respectively. This gives the equation
3c+3d—4f =0. (3a)

However (1), (2) and (3a) have no solution except for ¢ = d = { = 0, which
clearly is not a sensible answer to the present problem. If f > ¢+ d, then Alice

wins in four cases and we have
de+4d—-3f=0. (3b)

Solving (1), (2) and (3b) we find that ¢ may have any value, and f = 4c. Se a
fong is worth 4 congs. (Also a dong is worth 2 congs. So if we decide to take
¢ =5 or ¢ = 50, the country of Ozz need not be entirely mythical after all.)

Solved by: B. David, North Bondi, NSW.
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902 Given three non-collinear points X. ¥, Z such that ZXY Z is obtuse, show how
1

to construct a triangle AABC such that the median of the triangle through

A tersects the circumcirele at X, the angle bisector through A intersects the

cirewncirele at ¥, and the altitude through A intersects the crcumeirele at Z.

ANS. Firstly, since the points XV, Z are given we can draw through them the cir-
cumcirele of AABC. Now since AY bisects the angle at 4 we have equal angles

LBAY and £ZCAY . which

? &
%) " | (o

" /

X |

z
Y
are subtended by equal arcs BY,CY. Draw equal arcs (of any length) each side of

Y, cutting the circle in B’ and C'; then the line B'C" is parallel to the unknown
line BC. From the given information A7 is perpendicular to BC', therefore also
perpendicular to B'C’. Thus we may draw a line through Z, perpendicular to
the known line B'C’, and A is the other point of intersection of this line with
the circumcircle. Finally, we need to find the side BC » which is bisected by AX
Draw AYX, draw a diameter of the circumecircle perpendicular to B'C", call their
intersection Af, and draw a line through M parallel to B'C'. Then M is the
midpoint of the line (a diameter of a circle bisects any chord perpendicular to
it) and hence AX bisects the line, which is therefore the required BC. This

completes the construction.

Late solutions to problems from issue 1, 1993:

Jonathan Kong (Sydney Grammar School) sent in solutions to questions 882. 883 and 884.



