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HOW TO SOLVE CUBIC EQUATIONS BY FUNCTIONS
ON THE CALCULATOR

David Tacon

Although there 1s a formula for solving cubic equations (see Parabola, 2nd issue
1989) it is rarely used in practice since it can be tricky to apply in even very simple cases.
(Besides there are excellent numerical techniques which quickly find approximate solutions
to any degree of accuracy.) Our purpose here is to describe another old technique, due to
Francgis Viéte (1540-1603), which gives exact solutions in terms of trig functions precisely
when the cubic has three real roots. Thus, unfortunately, if the cubic has only one real
root (and two complex conjugate roots) this method is unable to find it, a phenomenon
which must have puzzled Viéte greatly. Books which describe Viéte’s method rarely show
how his technique can be modified to handle the other cases and this is what we wish to
show here. To do so we need utilize two other functions on the calculator, one of which we
“see” in our daily lives.

We begin with an observation which is even older than Viete: by a simple translation
we can remove the “square term” from any cubic equation we wish to solve. Substitute

a a . .
X =4+ - orzx =X — - in the equation

m3+am2+bm+c=0; (1)
then [X—§)3+a[X—§)2+b{X—§)+c:lJ
which simplifies to
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The point to appreciate is that any solution X to (2) gives rise to a solution z = X — 3
to (1), and, of course, vice versa. It follows that we can solve all cubics if we can solve all
cubic equations of the form

2 +ar+b=0. (3)

Since the special cases where either a = 0 or b = 0 are easily solved we henceforth assume

that a # 0 and b # 0. Following Viéte our intention is to exploit the trig identity

cos 30 = 4 cos* 8 — 3cosb.



This we rewrite as

3 1
3g_Z = =
cos” # 3 cos B 7 €08 3¢ =10. (4)

(To prove (4) start with the better known identity
cos(A + B) = cos Acos B —sin Asin B

and remember that cos? 8 + sin® § = 1.)
We look for a solution to (3) of the form z = r cos § where r > 0. We want r and 6 to
satisfy
r3cos® 8+ arcosf + b =0

b
or cos® 8 + %cosﬂ-l—r—a =0, (5)

By comparison with (4) r and 8 satisfy (5) if

a 3 b 1
=3 and —— s cos 36
pe., if = —2a 6(3)
4
il . (i)
™

Let’s test the method by solving
vy =3 —y+3=0

which we can see has solutions y = —2,2,3.

We make the substitution y = z + 1 so that the equation becomes
2 —Tx+6=0

and we now want to “discover” the three roots —3,1,2. We know z = r cos @ is a solution

if r2=-—%.—7=% and cos38=—%.
My calculator gives r = 3.0550505 so that cos36 = —.8416975 and ¢ = .8570719 (or
49.106603°). This gives ¢ = rcosf = 2.0000001. My calculator assumes its user knows

that cosine is periodic. Let’s graph y = cos 38 to see what is really going on.
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From the graph it is clear that another two solutions to cos 3¢ = —.8416975 which
give rise to different values of cos # are § — 1.2373232 (or 70.893397°) and 6 = 2.951467 or
(169.106603°). These give rise to z values of .9999998 and —3. Clearly we have found our

three roots.

= 1.
3 —
p
What does this tell us about the cubic v = 2% +az+b? Given the periodicity of cosine

This is all very well but we can solve 6(i) and 6(ii) (if and) only if a < 0 and ’j*—b

we might expect that our method is linked to the existence of multiple roots. Consider the

following sketches of the graph of a cubic.
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It is only in the 1st situation (I) that the function has three zeros. This is the case
when the function has a minimum below the z axis and a maximum above the r axis. In
the other cases, where the function has no turning points (II) or where the turning points
are on the same side of the z axis, as i:; (IIT) or (IV), there is only one zero.

v

The turning points occur where e 3z? + a vanishes. If @ > 0 then we have no
T
a

turning point and the graph is as in (II). Otherwise turning points occur at z = +4/—7

3
so that cases (II1) and (IV) occur if

a a
y( —g) Yy (—ﬁ—g ' < 0.
ie, if 276 +4a® > 0.

So let A = b* + 5";{13. A moment’s reflection shows that we have proved:

(i) the cubic has three real roots if A <0,

(ii) the cubic has one real root if A > 0.

(=A is called the “discriminant” of the cubic.)

Let’s check that Viete's attack works if A < 0. First observe that if A < 0 then
a < 0. This implies we can solve 6(i) for r, obtaining r = \/j%_a-. Equation 6(ii) then
has a solution since [4b] < r® as 27b® < —4a®. This means that if the cubic has three
real solutions then we can find (all of) them by using our trig identity. Our argument
simultaneously shows that if there is only one real solution then this approach cannot find
it.

What to do? We introduce two new functions cosh and sinh (pronounced “shine”)

which are defined by

ef + g
coshf = ————
2
eﬂ g
and sinh § = S where 8 is a real number.

i

These are called “hyperbolic functions” (the others are tanh, cosech, sech and coth —no
doubt you can imagine how they are defined), and they are evaluated on most calculators

by hitting the “hyp” button before the appropriate “cos” or “sin” button. (If you are
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familiar with the complex variable formulae cosf = e and sinf = =
Fat

where i = /=1 and # is a real number you will easily appreciate the notation.) These

functions are not (real) periodic and their graphs are sketched below.

y i
1 |

y = coshd y = sinh@

Notice that cosh is an even function (so that its graph is symmetric about the y axis)
and that sinh is an odd function (so that its graph is symmetric about the origin). Note
too that coshd > 1 for all 6 whilst sinh# takes all real values. Fortunately for us the

hyperbolic functions also satisfy cubic identities. On the one hand

& —0\3
cosh® 8 = (E—ze——) = é(e” +3e’ + 377 4 %)
1 3
iy B 2
1 cosh 36 + 1 cosh @
so that cosh® § — 3cosh® — Lcosh36 =0 (7)

which has the same form as (4).

On the other hand
8 _ —03
sinh® § = (e—;ﬁ) = %(e"'“ ~3e? 4 377 — 39

1 3
B 0, . S
45mh3 sinh £

so that sinh® 6 + 3 sinh 6 — 1 sinh 36 = 0. (8)
When a > 0, which means the graph of cubic is of type (II), we look for a solution of

the form z = rsinh §. This we can always find since we can solve

4h
r? = fa and sinh3f = ——,
3 rs
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If a < 0 yet A > 0 (as is the case if the graphs are of types (III) or (IV)) we substitute

4
2 = rcoshf, where we no longer assume that r > 0, and then solve r? = —3¢ and

4b
cosh 38 = . (If b > 0 we would do well to choose r = —y/—%a. Can you see why?)

Here are a few equations to try.

(a) 2®—6z+4=0
(b) 2 —-2z-4=0
(¢) z°—2z+4=0
(d) z*+2z-3=0.
There are a number of interesting points which arose in our discussion which deserve

further investigation.

Firstly did you notice that our proof of the identities (7) and (8) did not use any
property of e(= 2.718...)? For our purposes we could have just as easily have defined a

new function “cosk” by

# -8
cosk 8 = % for real values of 4.

(This function is not very useful and you won't see the “cosk” function defined in any

book!) We still have an identity:

cosk %8 — %cosk g — icosk 368 = 0.

Now suppose we wish to solve equation (c) above using the cosk function. We look for a

solution z = rcosk # so we need r and @ to satisfy
cosk 38 — -%-cosk ﬁ'—i—is =
r r

2 3 1 3
We want - = 1 and % = _Emsk 30 so wesetr = —2\[ and cosk 36 = f =4/13.5

V/'_

Here is a serious problem for there is no cosk ~ ! button on the calculator. But we don’t

need it! Suppose we wish to solve the equation

cosk t =y
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for ¢ in terms of y (we need to assume y > 1).

We rewrite as 10 + 107t = 2y
which becomes (10)? — 24.10* + 1 = 0.

This is a quadratic in 10%: it has solution
q

2
100 = BEV 28 s Ed

1
— 2_1 T
¥+ Yy ory+ _y2—1

St = dloge(y + Vvt - 1)

and we define the inverse function by

t = cosk _ly = log oy + V2 — 1)

Clearly this argument also proves that

cosh™y = fn(y +/y? — 1)

where €n = log, . There is no similar real valued formula for cos™! or sin™!!

Now back to our original problem which was to solve cosk 38 = 1/13.5. We have
30 = log,, («./13.5 + le.s)

so that # = .2859737-- ..

But then s R ; gl 1.2247449

so that ¢ = rcosk # = —-1.63--- x 1.22... = -2,
Do you realise why we find the cosh function on our calculators but not the similarly

defined cosk function? The reason hinges on the fact that y = e” is the most important

I

function in advanced mathematics. Why is it so important? Simply because di =g% it
T

1s the only function which is not altered by differentiation. Consequently

d
— coshz = sinhz, —— coshz = coshz and so forth.

dz dz?
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Finally it's apparent, after a little reflection, that we could have worked with the function
1 1
fd)y=glt+3)
rather than cosh t. This is because we could have exploited the identity
F(t%) = 4(F(1))° — 3£(2)

by seeking solutions of the form z = r f(t) for appropriate r and ¢.
Indeed we can exploit this identity in a slightly different way. Let’s suppose we wish

to solve the equation

tfbat® + bt et b2 4at+1=0. (9)

It can be rewritten as

1 1 1
3 2 T _ —
(£ + ) +a(t* + ) +b(t+ ) +e=0

ie., ((t+ %}3 — (¥ %)J +a((t+ %)2 —2) + b(t + %) +c=0

or 2 t+or?+(b—3x+c—2a=0 (10)
after substituting z = ¢ + % In other words we have reduced an equation of degree 6
(admittedly a rather special equation) to one of degree 3. Clearly we can thus solve (9)
piecemeal: first solving (10) for z and then finding ¢ from z = ¢ + % If you can muster

the energy you might find the real solutions of
41 -0t 4268 -9+t +1=0

And second last, what of our comment that we see one of the hyperbolic functions in our
everyday lives. The curve of suspension of a flexible rope or wire or chain (catena) is called
a catenary. If you are aware that the trajectory of a projectile is a parabola you probably
think that a catenary is a parabola. Even Galileo thought this but he was wrong too for

a parabola only approximates the catenary. The catenary is actually a cosh curve.
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