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UNSW SCHOOL MATHEMATICS COMPETITION 1994
SOLUTIONS

JUNIOR DIVISION

A large number of brown, green and yellow frogs are wandering around on an island.
Whenever two frogs of different colours meet each other, they change immediately
into two frogs of the third colour. More than two frogs never meet simultaneously.
If there are initially 1993 brown frogs, 1994 green frogs and 1995 yellow frogs on the
island, is it possible that at some future time all the frogs will have the same colour?

Solution. To obtain frogs of just one colour we must first reach a situation in which two
colours have equal numbers of frogs. When two frogs meet (and change colour), either
the numbers in two colours both decrease by 1, and so their difference is unchanged; or
one of the numbers decreases by 1 and the other increases by 2, so that the difference
changes by 3. Since the differences are initially 1, 1 and 2 and they can only change
by 3, the difference between two colours can never be 0. Thus it is impossible to get
equal numbers of frogs of two colours, and hence impossible to get all frogs of one
colour.

Are the following statements true or false? Prove your answers.

(a) A pentagon inscribed in a circle and having all of its angles equal must have all
of its sides equal.

(b) A hexagon inscribed in a cirele and having all of its angles equal must have all of
its sides equal.

Solution. (a) See the left-hand diagram below. Let LOAB = a, LOAE = 3. Then

each of the angles of the pentagon is a + 3. Since AOAB is isosceles (OA = OB)

we have /OBA = a and Z/OBC = . Similarly ZOCB = 8 and L0CD = a,

and eventually we get ZOEA = a. But since AOAEFE is isosceles this means that

a = . Therefore all five triangles in the figure are congruent, and the five sides of

the pentagon are all equal.
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(b) Such a hexagon need not have all of its sides equal: see, for example, the right-
hand diagram above.
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3. Add up the natural numbers in the sets
{1}, {4,5,6), {11,12,13,14,15] g
where one natural number is added, two omitted, three added, four omitted and so on,

and where n sets of numbers are taken altogether. Prove that your answer js correct.

Solution. The kth set contains 2k — 1 numbers, the last of which is
14243+ 4+(2%k-1) .
Summing an arithmetic progression, this last number is
3(2k — 11+ 2k — 1) = k(2% — D=2 =%
Hence the numbers in the kth set also form an arithmetic progression, and their sum
S @R -k - (2 DI+ (2K ~ k) = (2%~ 3)) + - 4 [282 = g
= 7(2%k - 1)[(2k% — k) - (2% — 2) + (2k% — &)
= (2k — 1)(28® - 2k + 1)
= 4k® — k% + 4k — 1
=k'—(k-1)1,
Therefore the sum of all n sets of numbers is
n"—(n—1)*+(n-1}4—(n—2}4+--++2‘*—1"+1“ - 0*

which equals n* since ever thing else cancels,
q E

1. A square billiard table with side length 1 metre has a pocket at each corner. A ball is
struck from one corner and hits the opposite wall at a distance of ;‘;f metres from the
adjacent corner. If the ball keeps travelling, how many walls will it hit before it falls
into a pocket?

Solution. Imagine that instead of the ball being reflected off the side of the table, the
ball keeps going and the table is reflected! The ball will fall into a pocket when it
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reaches for the first time a point (m,n) where both m and n are integers. Now the
points in the diagram at which the ba]l crosses a vertical line are



and since 19 and 94 have no common factor, the first such point at which the ball is
also on a horizontal line is (94,19). In reaching this point the ball will have crossed
93 vertical lines and 18 horizontal lines; thus, in the original problem, the ball will hit
111 walls before falling into a pocket.

. An infinite list of positive numbers ag,a;,az,4ds, . .. has the property that

1
p4+1 = On + —
Ay
forn=0,1,2,.... Prove that agg4 1s greater than 63.

Solution. Squaring both sides,
1
(an+i)2 = (an)z + 2+ m.f = (an)Q + 2.

Hence (a;)* > 2, (a2)> >4, ..., (a1994)® > 3988 and we have

1594 = v 3088 > 63 .

Tt is desired to write a given integer as the sum of four of its divisors (with repetition

of divisors forbidden). For example, 24 can be expressed in two such ways:
94 =124+8+34+1=12+6+4+2.

Show that for any given integer there are no more than six ways of doing this, and
find the smallest positive integer which has six solutions.

Solution. Suppose that n = dy + dz +ds + dy, Where
d1E1 = dgﬂg — dgE;; = d];e,; =nrn.

Dividing each side of the first equation by n gives

and so the problem is equivalent to that of writing 1 as a sum of four different unit
fractions (that is, fractions with numerator 1).

First try 1 4.1 1

23 p - q

with 3 < p < ¢. Collecting the numerical terms and clearing the denominators gives
pg = 6p +6¢ .

If we now take everything to the left hand side and add 36 to both sides we obtain

pq — 6p — 6g + 36 = 36 ,
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and the left hand side can be factorised to give
(P~ 6)(q—6) =36 .

Thus p— 6 is a factor of 36. However since £—=6 < ¢—6 we must have P-6 <6, and
hence p—6 = 1,2,3 or 4. So we have four solutions p = 7, 8,%or 10, with ¢ =42,24, 18
or 15 respectively.

Next try

with 4 < p < ¢. The same procedure gives (P—4)g—4) =16 and leads to two more
solutions p = 5,6 with g =20,12.

There are no more solutions, To see this, note that apart from the cases we have
already examined, the largest sum of four unit fractions including % is % +4 +é +1=
o # 1, and the second largest js 14 5+ 14 s = :—%, which is already too small;
while if 3 is not used then the largest possibility is 1 4 t+i+ g = 73> Which again
is too small. Thus we have only six solutions

L, ¥ L. 1 2.1 3 7y
1‘§+§+?+E“E+§+§+§Z
—1+5+1+1~3+1+1+1
T gV 18 27377 i5
ﬁ;+1+1+1_1+1+1+1
TETETE Ty s 46" 12

to the “four unit fractions” problem. Each of these will provide a solution of the
original problem for any n which is a common denominator for the four fractions;
therefore the original problem, for any n, will have six solutions or fewer. There
will in fact be six solutions if and only if n is a commop multiple of all twenty-
four denominators 2,3,7,42, . .. 16,12, that is, if and only if n is a multiple of 2520.
Therefore 2520 is the smallest number for which six solutions are possible, and these
solutions are

2520 = 1260 +- 840 + 360 + 60 = 1260 + 840 + 315 + 105
= 1260 + 840 + 280 + 140 = 1260 + 840 4 252 + 168
= 1260 + 630 + 504 + 126 = 1260 + 630 + 420 + 210 .

SENIOR DIVISION

1. A small circle is located inside a larger circle, with the two circles touching at the

point 4. Pis g point on the large circle, and 7T jg a point on the small circle such
that PT is tangent to the small circle. Prove that provided p # A, the ratio of the
lengths of PT and P4 is the same for any point P on the large circle.
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Solution. Let M, N be the centres of the circles, as shown; let r, R be the
A

radii of the smaller and larger circles respectively, and write /MNP = 8. By the
cosine rule in AANP we have

PA? = 2R? — 2R? cos§ = 2R*(1 — cos#) .
Similarly, the cosine rule in AMNP gives
PM? = R?4(R—r)? —2R(R—r)cosb,
and since ZMTP is a right angle, a little algebra leads to
pT? = PM? —r? = 2R(R — r)(1 — cos®) .

Hence

)

T R-=r

PA R
which does not depend on 8, and is therefore the same for any position of P.

9. An infinite list of positive pumbers ag, @1, 82,43, - - - has the property that
n41 = On G i
A
for n =0,1,2,.... Prove that digsa is greater than 63.
Solution. See problem 5 in the Junior Division.

3. Each of the numbers z1,%2,23,%4,T5 satisfies the inequality —1 < zx = 1. What is
the smallest possible value of

z1%2 + 123 + T1%4 + T2 4+ zory + T3Tg T
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What is the smallest possible value of

£1T2 + T123 + 124 + T35 + T2x3 + ToTy L TaZs + 3Ty + T325 + vax5 7

Solution. For the first part of the question, we have

T1Tp + 133 + Ty2q + ToTy + Tazy + 2314
= %[{J.’I +xatxy+oayg) - (22 4 v: + 22+ sl }] :
Now certainly
(@1 + 22 +2z3+24) 20,
and since each variable is between —1 and 1 we have also

:.,-f—i—zr% —|—:£§+;rz <4.
Therefore
1Ly + 2123 + 212y + XXy + Ty + 234 > lo-4]=-2,
Moreover, it is possible for the expression to reach this minimum value, for example,

when @; =1, 20 = -1, 3 = 1 and ry = —1,

For the second part, write

T1Z2 + 7123 + 2174 + T125 + 2223 + o4 + T2Ts + 3Ty + 2375 + T475

=I1T2 + 2123 + T12yg + a3 + ToT4 + T334 + (21 + 22 + 23 + r4)zs .

Ifr; +z3 + 23 4+ 24 > 0 then this expression takes its minimum value when 5 takes
its minimum value, that is, —1; while if 1 t+22 + 23 + x4 < 0 the expression takes its
minimum value when =5 takes its maximum value, 1. Thus we can find the minimum
value of the expression by letting #5 = %1; and the same is true of the other four
variables.

If all five variables equal 1 then clearly 12, + -+ + 2425 = 10. If four are 1 and one
is —1, then four of the products are —1, six are 1 and the sum is 2; if three are 1
and two —1 then six products are —1 and four 1 for a total of —2; and the remaining
cases give sums of -2, 2 and 10 again. So the minimum possible value is again —2,
occurring (for example) when z; = Tz =23=1land x4 =25 = —1.

- Find a sixth-degree polynomial with integer coefficients which is 2 factor of #1% 4 1.

Solution. For any odd integer n,
A= X+ X=X X 41)

and so X + 1 is a factor of X" +1. In particular, let X = 2° and n = 3: then z° + 1
is a factor of 2!° + 1. In the same way, taking X = 2 and n = 5 shows that 23 + 1 is
a factor of '% + 1. Furthermore,

;r5+1-—_[.r+lj(:c"—:c3+a:2—-x+l} and :::3+1={;r-|—1)(:r?—:r—|—],‘l,
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sozt —2* + 22 —r + 1 and 2? — = + 1 are factors of 2'® + 1. Now suppose that
these two polynomials themselves have a common factor. Then there is a (complex)
number 2 such that

=2 +22—241=0 and #*-z+1=0;

hence

-2 4+22=0=> —2+1=0=z=1,
which is impossible as 22 — = + 1 is not zero when ¢ = 1. Hence the quartic and the
quadratic found above are factors of #'* 4 1, and they themselves have no common
factor, so their product

28— 955 432 832 4+ 35 =22 + 1

is a factor of z!® + 1.

. Prove that, of the positive integers less than one million, there are at least 203 which
cannot be written as a positive integer plus the sum of the squares of the digits of
that integer.

Solution. For any positive integer n define n* to be the sum of n and the squares of
the digits of n. Essentially, we want to know how many values of n* are less than one
million. Clearly, if n > 1000000 then n* > 1000000. Also, if 999707 < n < 1000000
then the first three digits of n are nines and the fourth is seven or more, so

n* > 999707 + 9% + 9% + 9% + 7% = 1000000 .

This leaves 999 706 values of n; these give 999 706 values of n*, and, indeed, even some
of these values may be greater than one million (for example, 999 699* = 1000141) or
may repeat each other (for example, 5* = 22*). So there are at most 999 706 values of
n* less than one million, and therefore at least 999999 — 999 706, that 1s, 293 integers
less than one million which are not equal to any value of n*.

. In Martian rules football, the score is made up of goals and behinds, each being worth
a certain whole number of points. There are 35 scores which it is impossible for a
team to get in total; one of these scores is 58. If a goal is worth more than a behind,
how many points are scored for each?

Solution. Let ¢ and b be the number of points scored for a goal and a behind. First
observe that g and b have no common factor (otherwise there are infinitely many
impossible totals), and b > 1 (otherwise there are no impossible totals). Now consider
a score s > gb. Since g, b have no common factor we can find integers =,y such that

gr+by=s.

Thus scoring & goals and y behinds will amass a total of s points. Of course we need
z and y to be non-negative — even in Martian rules you can’t score negative goals! To
achieve this, note that if z < 0 we can increase = by b and decrease y by g, giving a

score
glz+b)+by—g)=gz+by=s.
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We can keep on increasing the value of z until it is non-negative. Similarly, if  is
initially greater than b we can reduce it in steps of b until we get

gr+by=s, 0<z<b;
in this case we also have
by=s—gz>gb-—gbh=0,

so y, the number of behinds scored, is positive. This shows that it is possible to score
any total not less than gb.

The possible scores less than gb are the following:

gb, where0<q<yg;
9+4qb, where0 <gq < (b-1)g/b;

(b—1)g +qb, where 0 < g < ¢/b.

There are g possibilities in the first group, g + 1 in the second and the last combined,
g+ 1 in the third and the second last combined, and so on, for a total of

g+3(b=1)g+1);

all these possibilities are different since ¢ and b have no common factor. Hence the
total number of impossible scores is

96~ (9+30-1(g+1)) =g -1)b-1)
and it is given that this equals 35. So (9 —1)(b—1) = 70 and we have the possibilities

g-1=70, b—-1=1;
g—1=35, b-1=2,
g=1=14, b-1=5;
g—1=10, b-1=7.

The second of these gives ¢ = 36, b = 3, which is impossible as we know that g and b
have no common factor; and the third ;s ruled out similarly. Finally, the first would
give b = 2, and this must be eliminated since it is given that a total of 58 cannot be
scored. Therefore a goal is worth 11 points and a behind is worth 8.
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