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POLYNOMIAL APPROXIMATIONS

' Bill McLean*

Many mathematical functions are not readily computable using only a finite sequence
of elementary arithmetic operations (additions, subtractions, multiplications and divi-
sions). In this article, I will discuss a general strategy for evaluating a function f(z) for z
in a chosen interval I. This strategy is the basis for many algorithms used by electronic
calculators and computers,

The idea is very simple: given f and I, we look for a polynomial of degree n, denoted

by P,, such that
flz) = Py(z) forzel. (1)

(The symbol = means “approximately equal to.”) Since the evaluation of
Pu(z)=ap+ayz+ art 4+ apz"

requires only a finite number of multiplications and additions (or subtractions), (1) provides
a computable approximation to f(z).

Most methods for choosing P,(z) have the property that the approximation (1) im-
proves as one increases the degree n. Of course, increasing the degree involves doing
more work, both in finding the coefficients ag, a;, ..., an, and in evaluating P,(z) for a
particular x. The trick is to achieve the required accuracy using the smallest possible n.

As an example, consider the natural logarithm of 1 4+ z. It turns out that

1n(1+::}ax—§+r—:: forz €1, (2)
where I is a “sufficiently small” interval about 0. If we were interested in, say, In1-1037,

then we would put r = 0.1037 and obtain

: T2 : 3
1n1-1037 = 0-1037 — L1880, (O ”;3” = 0-09869. (3)

* Bill is an applied mathematician at UNSW.
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(The dot over the equal sign indicates that we have rounded to the number of decimal
places shown.) According to my calculator, In 1-1037 = 0-09867, so our approximation (3)

is probably accurate to 4 decimal places. For an explanation of why (2) holds, let

f(z)=In(l+=z) and Ps{;c]=zc~%2+z—;,
and calculate the first few derivatives,

i) =T, Pi(z)=1-—z + 1%,

f'(x)=-(1+a2)7%, Py(z) = -1+ 2z,

f"(z)=2(14z)"%, PM(z) =2.

When r = 0, we have
f(0)=0=P(0), f'(0)=1=Py0), f"(0)=-1=P(0), f"(0)=2=P"(0),

so the values of f and its derivatives of order 1, 2 and 3 all agree with those of Pj,
forcing the graphs of the two functions to be close together in an interval around 0; see

the computer-generated plots in Figure 1.
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Figure 1: The solid line is In(1 + z), the dashed line is  — 2?/2 4+ #3/3
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In general, you can easily check that if we put
_ 1 fH(D] 2 (n) [P
Pn[;r}-f(ﬂ]+f[ﬂjr+—2 z* + -+ f17(0) € vernlx”, (4)
wheren! =1 x2x 3 x--- xn, then
Py(0) = f(0), P,(0) = f'(0), ..., P{M(0)=f"(0).

We call (4) the Taylor polynomial of degree n for the function f(z). In the example above,
r —z%/2 + z%/3 is the Taylor polynomial of degree 3 for In(1 + z). As an exercise, you
might like to verify that

p— =z T T

£ R +I+2+—3'f+-4'T+E¢
3 .5
s:nx"—:x——l+§,
::"; ;r".
msxﬂ:]——a—+—l

The Taylor approximation f(z) = P,(z) deteriorates as r moves away from 0, as you
can see from Figure 1. If we are interested in values of f(z) for z near a point ¢ at some
distance from 0, then we can work with f(c+ z) instead of f(z), because ¢+ z is close to ¢

when z is close to 0. The resulting approximation is

H(

flet2) = f(e)+ f(e)r+ It 4oy ey

R

obviously, to use this Taylor polynomial we must know the values of f(z) and its first
n derivatives at = = c.

Any particular Taylor polynomial can only give accurate approximations for z in a
small interval around a single point. If we want to cover a larger interval, then we can
use several Taylor polynomials, or perhaps a single Taylor polynomial of very high degree.
However, neither option is very convenient, and in practice it is better to use other types
of polynomials.

For instance, consider the following cubic approximation to In(1 + z),

Py(z) = 00004416160 + 0-9834928213 = — 0-4000352894 z* + 0-1096896488 z*.  (5)
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If you were to plot this polynomial together with In(1 + =) for 0 < = < 1, then the two
graphs would be indistinguishable. To see any difference at all, we have to plot the error,
Ps(x)—In(1+ z), and magnify the vertical scale; see Figure 2. The cubic (5) is an example
of what is called a minimaz polynomial: out of all possible approximations of the form
P3(z) = ag + a = + z2x? + z323, this particular choice minimises the maximum error over

the interval [0, 1), i.e., the coefficients in (5) minimise the quantity

max |(ag + a1z + azz’ + azz®) — In(1 + z)|. (6)

0<r<1

From Figure 2, you can see that this minimax error is less than 0-00045.
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Figure 2: The error Py(z) — In(1 4 z) for the minimax polynomial (5)

The minimax polynomial can be found using a method known as the Remez algorithm,
The details are rather complicated, but the general idea is to start with some reasonable
first attempt at a polynomial approximation — e.g., a Taylor polynomial — and then keep
modifying the coefficients until the error looks like Figure 2, where all the local maximima
and minima are of the same magnitude. It turns out that this equi-escillation property
guarantees that the maximum error is as small as possible. You can think of the Remez
algorithm as spreading the error uniformly over the given interval, in contrast to the error
for the Taylor polynomial which is highly non-uniform; see Figure 3, where the maximum
error over the interval [0,1] is about 0-14, or more than 300 times larger than for the

minimax polynomial (5).

14



Figure 3: The error Py(z) — In(1 + z) for the Taylor polynomial z — z?/2 + 23 /3.

I should point out that in order apply the Remez algorithm, it is necessary to have a
primary method of computing f(z) that uses only elementary arithmetic operations. One
might use Taylor polynomials of high degree, or sometimes there are clever, special-purpose
techniques for particular functions. For example, in a previous article (Parabola 28(2)) I

described a method for computing Inz and e*, based on the identities
In(zy) =Inz+Iny and e**¥ = e el.

Once the coefficients of the minimax polynomial P,(z) are known, the primary method
for computing f(z) is no longer necessary — for a given z, evaluating P,(z) will almost
certainly involve less work.

There is one final matter I want to discuss. Many functions take particularly simple

values at special points; for instance,
In1=0, =1, sin0=0, cos0=]1.

It is usually desirable that polynomial approximations should reproduce such relations
exactly. Thus, a drawback of the minimax polynomial (5) is that it gives 0-00044... as
its value for In1. To get around this problem, we can minimise the maximum error (6)

subject to the constraint ag = 0, so that P3(0) = 0 exactly. The resulting cubic is

P3(z) = 0-9874532942 r — 0-4084070196 z* + 0-1146352802 z°, (7)
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and a plot of its error is shown in Figure 4.
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Figure 4: The error Ps(z) — In(1 + z) for the constrained minimax polynomial (7).

The maximum error is about 20% larger than for the unconstrained minimax cubic (3),
but for most purposes this overall loss of accuracy is a price worth paying in order to obtain
the exact value for In1. In any case, the error can always be reduced by increasing the

degree while still requiring that ag = 0.

SOLUTION TO PUZZLE

The passage is Fermat's famous marginal note in Diophantus’ Arithmetic (as tran-
seribed in a later edition of Diophantus published by Fermat’s son):

“However a cube cannot be divided into [the sum of] two cubes, nor a fourth power
into two fourth powers, nor in general any power greater than a square into two equal
powers: of which fact I have found a marvellons proof. But the space in the margin is too
narrow [to write the proof down).”

Now see pave 24,
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