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AN INTRODUCTION TO NONSMOOTH CALCULUS
V. Jeyakumar' and B. M. Glover?

In this short article we will introduce some 1mportant notions concerned with
the class of conver functions. These functions are not necessarily differentiable in
the usual sense of calculus. The motivation for studying such functions is that
they frequently arise in many applications of mathematics to finance, economics
and engineering. One branch of mathematics in which convex functions are often
studied is Mathematical Programming. This is the study of eptimization problems;
that is problems in which we wish to optimize (either maximize or minimize) a
function (usually of several variables) often subject to a collection of restrictions on
these variables. The restrictions are known as constraints and the function to be
optimized is the objective function. A classical example of an optimization problem
is the problem of maximizing profit subject to limitations on available resources,
manpower ete. For the sake of simplicity and to focus on the key ideas we will be
interested only in functions of a single variable and simple optimization problems.
Not perhaps surprisingly many of the siimple concepts and techniques we will touch
upon have extensions to the most general multi- dimensional case involving functions

depending on many variables.

An important aspect of the study of optimization problems is to determine con-
ditions for optimality of a function at a given point. For example from elemen-
tary caleulus you should be familiar with the fact that for a differentiable function
y = f(z) a necessary condition for f(ir) to achieve a local optimum (either maximum

or minimum) at a point « is that

f'la) = 0. (1)

This says that at a local optimum the graph of the function has a horizontal tangent.
We say that (1) is a first order necessary optimality condition (since it involves first
order derivatives). A condition such as (1) can be used in a computational method
for locating local optima; that is if we can locate a point a satisfying (1) then
this point is a candidate for local optimum of the function. Of course we should

note that (1) need not indicate either a local maximum or minimum. Consider the
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simple example f(z) = 23, here = = 0 is a slationary point (i.e satisfying (1)) but
this point corresponds to a point of inflexion rather than a local optimum. Thus,
in general, (1) 1s a necessary but not sufficient condition for optimality. However,
for example, there is a broad class of functions for which every stationary point is
a global minimum. These functions are called conver functions. To consider the

properties of these functions we first define a conver set in the Euclidean plane IR?.

Definition 1 A set C is conver if it contains all points on the line segments joining

any two points in the set.
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A convex set A nonconvex set

Definition 2 A function f(x) is said to be conver if, the chord connecting any two
points on the graph of the function always lies above the graph. In other words, a

function f is convex means that its epigraph, epi f, is a convex set. Here
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The epigraph of a convex function.

Exercise 1 By considering their graphs show that f(x) = z* is a convex function

whereas g(x) = =* is not.
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Another important property of a convex [unction f is that, for any a, 3, we have
fle) = f(B) = F'(B)a = B). (2)

The inequality tells us that the secants that emanate from the point (3, f(3)) always
lie above the tangent line at this point. Here the secant is the line segment joining

the points (e, f(a)) and (3, f(B)) on the graph of f(z). .'H

It is straightforward to show, for example, that (2) is satisfied by the function

flz) =a*
f(@) = £(8) = F(B)a—B) = o= 5 =28(a~p)

= a'—28a+ 8
= (a-3)
> 0.

Hence if we know that f is a convex function then any point satisfying (1) is
a global minimum. This follows easily from (2) above. Consequently (1) is both

necessary and sufficient for global optimality for a differentiable convex function.

Exercise 2 By considering simple examples (such as 2%, 2%, e*, —Inz etc) see if
you can determine second order properties of convex functions (that is what can we

say about f“(z)if f is convex).

We should note that if (1) holds and f"(a) > 0 then a is a local minimum. This

provides us with a second order optimality condition.

The discussion to date has focussed on differentiable functions. Recall that a
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function y = f(2) is differentiable at x = a if we can find the limit of

fla+h) = [(a)

hi
as h approaches zero. We say that f is differentiable if it is differentiable every
where. We often refer to differentiable functions as smoeth {unctions. This follows

from the geometry of calculus. That is, if f is differentiable then it has a unique

(3)

(non-vertical) tangent at each point on its graph.
A9
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The graph of a differentiable function

Thus the graph of a differentiable funclion appears smooth, that is it has no
‘sharp’ points. However in many applications we encounter functions which are
not smooth. In the simplest cases their graphs contain one or more sharp points
indicating point(s) of nondifferentiability. For example consider the absolute value
function o

x if =
f(t]=|z|={ -z if x <0
This function has no derivative at = = 0. It is. however, continuous (i.e no jumps
or missing points in its graph), convex and has a global minimum at = = 0. The
question we are now interested in is whether there is an analogue of (1) for functions
such as the absolute value function. In particular is there an analogue for non-
smooth convex functions? The answer is yes. Before we discuss this further we need

some more basic information about convex functions.

Theorem 1 If y = f(z) is a convex function then the following are valid:

(i) f is continuous,
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(ii)) f possesses one-sided derivatives at each point; that is, for any @ we can

calculate the following limits:

fi(a) =t Lt B =S (@)

h—ut h

and

f'(a) = hl.‘ifhi- f(a+h£ - f{a)'

Here h — 0% means that we are only concerned with the limit as k approaches zero

from the positive side, whereas i — 0~ refers to the limit as h approaches zero from

the negative side.

Exercise 3 Show that for the absolute value function f(z) = |z|, fi(0) =1 and
f(0) = —1. Discuss what this means geometrically in terms of tangents to the
graph of f near zero.

We should note that if a function f actually has a derivative at a point a then the
two one-sided derivatives coincide at that point. However for a convex function at
a point of nondifferentiability these one-sided derivatives exist and are distinct. We
now define a set, known as the subdifferential, which will replace the non-existent
derivative at points of nondifferentiability for a convex function. The notation for
the subdifferential of a convex function f at a point a is df(a) and it is defined as
the interval

af(a) = [fL(a), fi(a)).

Note here that the interval [c, d] is defined as the collection of numbers between ¢
and d, where ¢ < d. The subdifferential has also the following equivalent form:

Af(a) = {a: f(z)— f(a) > a{x — a), for all z }.

This is a fairly complicated definition and we need to have some geometric interpre-
tation of it. So, for the absolute value function f(r) = |z|, @f(0) = [-1, 1]. This,
intuitively, coincides with the gradients of the ‘tangents’ which can be drawn to the
graph of f at the point (0, 0). Thus at any point at which a convex function f
actually has derivative the subdifferential reduces to a set with one element - the
derivative at that point. At other points the subdifferential is an interval whose end

points are the one-sided derivatives at that point. For instance, f(z) = 2 + 1 has
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af(0) = {0}. A~ T

Unique tangent Non-unique tangents

Exercise 4 Calculate the subdifferential at the origin for each of the following

convex functions:

20 f 220
z if <0

() flz) = {

PYER G s

Now we return to consider optimality conditions. Recall that for the absolute
value function f(z) = |z| we have 8f(0) = [—1, 1] and = = 0 is a global minimum.
From this very simple example we note that * = 0 is a minimum and 0 is inside
Adf(0). It can be shown that the analogue of (1) for convex functions is that if a is
a minimum of a convex function f then 0 is inside the @f(a). In fact this condition
is both necessary and sufficient for a to be a global optimum for convex functions.
Test the functions in exercise 4 above to show that this condition is indeed satisfied

at any minimum point.

Example Find the line of ‘best’ fit passing through the points (1,1), (2,0),
(3.2). Belore we can begin to consider a solution to this problem we need to decide
what exactly is meant by ‘best fit’. This problem of finding a straight line which in
some sense provides a best possible fit to a sct of data points is extremely important
in many areas of mathematical modelling and statistics. The favoured method of
defining the line of ‘best’ fit is to construct the least-squares line of best fit. In this
case we let our line have equation y = a + Jx, where a and 3 are to be determined

22



so that the sum of the distances from the data points to the line is a minimum. This

means we wish to find e and 3 which minimize the following function:
Sile,B) = (a+ 8= 1)+ (a +26)* + (a + 36 - 2)*.

This is a function of two variables which is differentiable everywhere (one of the
reasons for using this approach) and it can easily be shown that f is convex and
attains its minimum at the point (0,0.5). Thus the least-squares line of ‘best’ fit is

y = 0.5z. Plot the points and the line to verily this seems a reasonable solution.

However there are many ways to define ‘best’ for our straight line. Another
possible definition is to choose a and 3 so that the sum of the vertical deviations
from the data points to the line are a minimum. In this case we need to find & and
A which minimize:

fa(e,B) = [a+ =1+ |a+ 28] + |a+ 35 - 2|.

This is also a function of two variables and it is also convex but it does not have
derivatives everywhere. If you have access to computer graphing software (such as
Maple or Derive) it is helpful to plot the graph of this function (a 3-dimensional
plot of course). It can be shown that f; reaches a minimum at (0.5,0.5) and that
the subdifferential of f; is given by:

3f2(0.5,05) = {(u+v+1l,u+3v+2): u,ve[-1,1]}

It is not difficult to see (by solving a pair of simultaneous equations) that (0,0) €
3£2(0.5,0.5). Thus our necessary and sufficient condition for optimality is satisfied
so that (0.5,0.5) is indeed the minimum. But you should notice that y = 0.540.5z is
a different line of ‘best’ fit to that obtained by the least-squares method. For certain
practical problems of data analysis the second method discussed above provides a
more reasonable line of best fit than the first. The difficulty with the second method
is that the function to be minimized is not differentiable and so it is inherently more
difficult to locate the optimum.

We have briefly discussed an important class of functions which arises frequently
in optimization. In particular we have endeavoured to illustrate that a lack of dif-
ferentiability is not always an impediment to developing verifiable optimality condi-

tions. Essentially we use a set of gradients to replace the non-existent derivative at
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points of nondifferentiability. Such a set always exists for convex functions and stan-
dard first order necessary conditions such as (1) have a natural analogue for these
functions. This discussion just touches upon some of the concepts that form the
basis for a branch of mathematics known as nonsmooth caleulus, which has received

considerable attention over the past 20 years.

On October 25, 1994, the following announcement was circulated on the Inter-
net math. announce newsgroup, by Karl Rubin of Harvard University.

As of this morning, two manuseripts have been released

Modular elliptic curves and Fermat’s Last Theorem, (by Andrew Wiles)

Ring theoretic properties of certain Hecke algebras, (by Richard Taylor and An-
drew Wiles)

The first one (long) announces a proof of, among other things, Fermat’s Last Theorem,
relying on the second one (short) for one crucial step.

As most of you know, the argument described by Wiles in his Cambridge lectures
turned out to have a serious gap, namely the construction of an Euler system. After trying
unsuecessfully to repair that construction, Wiles went back to a different approach, which
e had tried earlier but abandoned in favor of the Euler system idea. He was able to
complete his proof, under the hypothesis that certain Hecke algebras are local complete
‘ntersections. This and the rest of the ideas deseribed in Wiles” Cambridge lectures are
written up in the first manuseript. Jointly. Taylor and Wiles establish the necessary
property of the Hecke algebras in the second paper.

The overall outline of the argument is similar to the one Wiles described in Cambridge.
The new approach turns out to be significantly simpler and shorter than the original
one, because of the removal of the Euler system. (In fact, after seeing these manuscripts
Faltings has apparently come up with a further significant simplification of that part of
the argnment.)

Versions of these manuscripts have been in the hands of a small number of people for
(in some cases) a few weeks. While it is wise to be cautious for a little while longer, there

is certainly rzason for optimism.
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