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HUYGENS’ CONSTRUCTION

FOR THE REFLECTION OF A PLANE WAVE FROM A CONCAVE
PARABOLIC MIRROR

R.S. Horsfield
Science Department, Barker College

In 1678 Christiaan Huygens developed a wave theory of light in contradiction of New-
ton’s corpuscular theory. It was not published until 1690. Huygens’ Principle, or

“Construction” allows the successive shapes and positions of a travelling wavefront
to be determined by using the following procedure:

• Assume that every point on a wavefront (of light) is a source of spherical (circu-
lar in two dimensions) secondary wavelets which travel through the medium at
the wave speed. These wavelets are hypothetical and have an amplitude which
varies as (1+ cos θ) where θ is the angle from the forward direction normal to the
wavefront. (Real ripples have the same amplitude around their circumference).

• The position and shape of the wavefront at any time can be reconstructed from
the envelope of all of the secondary wavelets from all of the points on an earlier
wavefront or wavefronts.

As a geometrical construction, without equations, it is easy to model the propagation,
reflection and refraction of plane waves in two dimensions using Huygens’ Principle.
The application here is rather more subtle. Consider a plane wave with wavefront
perpendicular to the principal axis of a parabolic mirror at successive positions as it
moves into the mirror (Figure 1): As the wavefront moves in at constant velocity we

can construct secondary wavelets centred on the points P1, P2, · · · , P9. By the time the

wavefront has reached the vertex of the parabola, P10, the wavelet from P1 has a radius
equal to the distance from position 1 to the vertex, that from P2 a radius equal to the dis-
tance from position 2 to the vertex, and so on. That is the wavelets from P1, P2, · · · , P9

are “semi” circles of uniformly decreasing radii. The wavelets on the points on the

other side of the principal axis are the mirror images of those on P1, P2, · · · , P9. These
are all shown in Figure 2 where it is clear that the envelope of all of these wavelets is
a circle centred on the focus of the parabola. (The envelope of a family of curves is

a curve C with the property that for each point P on C there is a curve of the family
through P and tangent to C.)
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Figure 1: Successive positions of the plane wave going into the parabolic mirror

Figure 2: Secondary wavelets and their circular envelope

It is easy to imagine the wavelets from points before P1, with successively larger radii,
forming the rest of the circular envelope on the opposite side to P10. Similarly the many

small radius wavelets between P9 and P10 complete the circle near P10. The recon-

structed wavefront from the reflection of a single plane wave from a parabolic mirror
is a circle centred on the focus of the parabola; it is moving inwards towards the focus,
the plane wave is brought to a focus at F . This is just what we observe by tracing rays
and reflecting them from the parabola so that the angle of reflection equals the angle
of incidence. Analytical Proof. Consider the parabola y2 = 4ax and the wavelet on

the point P (ap2, 2ap). The secondary circular wavelet on P has radius ap2 when the
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incident wavefront has reached the vertex (0, 0). Thus its equation is:

(x− ap2)2 + (y − 2ap)2 = (ap2)2.

This simplifies to a quadratic function f(p) of the parameter p :

f(p) ≡ 2a(2a− x)p2 − 4ayp+ (x2 + y2) = 0. (1)

Clearly this equation represents an infinite set of such circles, each one determined by
a value of the parameter p. For any point (x, y) on the envelope there must be a value

of p for which (x, y) satisfies (1) (since it touches each circle in the set at one point).
Now, the partial derivative of f(p) with respect to p, measures how f(p) changes with

variations in p. It turns out that points on the envelope must also satisfy the equation

∂f

∂p
= f ′(p) = 0. (2)

It is a little difficult to explain why this must generally be the case but because our func-
tion f(p) is a quadratic we can proceed more geometrically. Since f(p) is a quadratic

in p, given the point (x, y), there are either 2, 1 or 0 values of p for which (1) holds;
i.e. there are either 2, 1 or 0 of our secondary circular wavelets through (x, y). It is
intuitively clear that any point (x, y) on the envelope belongs to exactly 1 wavelet.
Therefore the roots of (1) must be equal. (Note that the roots of (1) are equal if and only

if
∂f

∂p
= 0, confirming the truth of (2) in this particular case.) Now the roots are equal

when “4 = b2 − 4ac = 0.” Looking at (1) again:

2a(2a− x)p2 − 4ayp+ (x2 + y2) = 0

we see4 = b2 − 4ac = 0 gives: (note ‘a’ is different in each equation).

(4ay)2 − 4(2a(2a− x))(x2 + y2) = 0

∴ 16a2y2 − 8a(2ax2 + 2ay2 − x3 − xy2) = 0

∴ 16a2x2 − 8ax3 + 8axy2 = 0

Divide through by 8ax to get
−2ax+ x2 + y2 = 0

complete the square:

x2 − 2ax+ a2 + y2 = a2

∴ (x− a)2 + y2 = a2. (3)

This is the equation of the envelope of all of the secondary wavelets, a circle of radius
a centred on the focus (a, 0) – wow!!
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