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HERON’S FORMULA AND SOME MYSTERIOUS TRI-
ANGLES

Peter Brown

Suppose your teacher asks you to find the area of the following triangle. Your approach

would probably be to use the cosine rule to find, say, angle C and then use the formula
A = 1

2
ab sinC to get the area. Specifically:

cosC =
72 + 92 − 62

2.7.9
=

47

63
so C ' 41.75◦.

Hence the area is approximately 20.975 units2. In fact, the exact area is 2
√
110 units2.

One way to see this is to write A = 1
2
ab
√
1− cos2C

=
1

2
.7.9

√
1− (

47

63
)2 = 2

√
110,

but you can get this answer directly without finding any of the angles in the tri-
angle. Given any triangle, with sides a, b, c, we calculate the quantity s (called the
semiperimeter) given by

s =
1

2
(a+ b+ c).

The ancient Greek mathematician Heron (circa AD62) showed that the area of the tri-
angle is given by

A =
√
s(s− a)(s− b)(s− c)

(Probably Heron’s proof was due to Archimedes but nevertheless the formula is now
known as Heron’s formula.) We can easily establish the result using the ideas we
started with and some pretty applications of the difference of two squares.
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Starting with triangle ABC

we can write cosC =
a2 + b2 − c2

2ab
and use the area formula

A =
1

2
ab
√
1− cos2C

=
1

2
ab

√
1− (a2 + b2 − c2)2

4a2b2

=
1

4

√
4a2b2 − (a2 + b2 − c2)2

Now, by the way, as a general principle in mathematics you should never expand a
complicated algebraic expression unless someone is holding a gun to your head (or
alternatively you’ve exhausted all other modes of attack)!

The expression under the square root sign is a difference of two squares, so

A =
1

4

√
[2ab− (a2 + b2 − c2)][2ab+ (a2 + b2 − c2)]

Once again, expanding is disastrous, but you should recognise a couple of perfect
squares in the brackets, giving

A =
1

4

√
[c2 − (a− b)2][(a2 + b)2 − c2]

and another difference of two squares gives

A =
1

4

√
(c− a+ b)(c+ a− b)(a+ b− c)(a+ b+ c).

Finally, taking the 1
4

inside the square root sign and ‘spreading it around’, we get

A =

√
(
c− a+ b

2
)(
c+ a− b

2
)(
a+ b− c

2
)(
a+ b+ c

2
)

which becomes more compactly,

A =
√
s(s− a)(s− b)(s− c)

2



when we introduce the semiperimeter s. By the way, this was not the proof published
by Heron. He used some complicated geometry, since he didn’t have trigonometry at
his disposal. Example: Find the area of the triangle with sides 8, 6 and 4. Here s = 9,

so the area A is given by
A =

√
9.1.3.5 = 3

√
15.

This is surely much quicker than using trigonometry! (AND you don’t need a calcula-
tor!) Question. Can you find a non-right angled triangle with integer side lengths and

integer area?
There are in fact infinitely many such triangles. For example a triangle of sides 13,

14, 15 has area 84 units2. Such triangles are called Heron triangles.
There are several algorithms for finding examples of Heron triangles. One simple

method is to take two Pythagorean triads, (a, b, c), (a′, b′, c′), and ‘glue’ together the
corresponding triangles in some way.

Let h = lcm(b, b′) i.e., the lowest common multiple of b and b′. Then h = bn = b′n′.
Construct triangles ZYW and ZXW similar to triangles ABC and A′B′C ′ respectively

with h = ZW. Then by similar triangles, we have

x = nc, y = n′c′, z = na+ n′a′.

Now 4XY Z is a Heron triangle, since its area is 1
2
h(na + n′a′) which is always an

integer (why?)
To illustrate this result, choose the Pythagorean triads (3, 4, 5), (5, 12, 13).

h = lcm(4, 12) = 12, so n = 3, n′ = 1

whence x = 15, y = 13, z = 9 + 5 = 14 and (15, 13, 14) is Heron triangle of area 84 as
we stated above.

3



A more complicated algorithm was given by the Indian mathematician Brahmagupta
in the 7th century AD, but since it would take me too long to explain why it works, I
will simply give you the result.

Choose any two positive rational numbers α and β such that αβ is greater than 1
and let γ = α+β

αβ−1 . Write α, β, γ with a common denominator and take the numerators
α′, β′, γ′. Then with x = α′ + β′, y = α′ + γ′, z = β′ + γ′, we have the sides x, y, z of
a Heron triangle. For example, take α = 4

3
, β = 7

5
then γ = 41

13
. Putting these over a

common denominator we get

260

195
,
273

195
,
615

195
, so (α′, β′, γ′) = (260, 273, 615)

so (x, y, z) = (533, 875, 888)

which is a Heron triangle with area 223860. Interestingly, if we choose α, β such that
(α− 1)(β− 1) = 2 then γ = 1 and a little algebra will reveal the fact that (y, z, x) is then
a Pythagorean triad!

Heron listed a number of Heron triangles among which were many examples with
consecutive integer sides. While he seems to have believed that there were infinitely
many such triangles with integer areas, he could not give any systematic way of find-
ing all of them. This is not surprising, since the answer comes down to a problem in
number theory which was not solved till much later.

If n − 1, n, n + 1 are the sides of a triangle with integer area then we can find all
the integer values of n by taking n to be the nearest whole number to (2 +

√
3)k, k =

1, 2, 3, . . . , . Not surprisingly this requires some fairly ‘high powered’ mathematics (in
particular continued fractions). The area is given by 1

4
n
√
3n2 − 12 (this is easy to show)

which will be (surprisingly) an integer when n is taken as above. Here are the first few

k n-1 n n+1 Area
1 3 4 5 12
2 13 14 15 84
3 51 52 53 1170
4 193 194 195 16296

Triangles are very nice objects, in that they have enough rigid structure to be able to
say a lot about them. The same is not quite true for quadrilaterals. For example if we
only know the sides of a quadrilateral then the area is not uniquely determined. We
need to know also, two of the angles in the quadrilateral.

Heron’s formula can then be generalised slightly in the following way.
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Let s =
a+ b+ c+ d

2
and α =

θ + ϕ

2
.

Then the area is given by

A =
√

(s− a)(s− b)(s− c)(s− d)− abcd cos2 α.

This formula is harder to prove, although the proof only uses ‘basic’ trigonometry and
algebra. Moreover it is not as elegant or simple as Heron’s formula.

However, if we have a cyclic quadrilateral, then the opposite angles are supple-
mentary. Hence θ + ϕ = 180◦ and so α = 90◦. In this case the formula collapses to

A =
√

(s− a)(s− b)(s− c)(s− d)

which is sometimes called Brahmagupta’s Theorem (Brahmagupta seems to have thought
that the formula was true for all quadrilaterals.)

The problem of finding cyclic quadrilaterals with integer sides and integer area is
somewhat more difficult, but one way of generating some of them might be to take
two Pythagorean triads and glue them together in a similar manner to that which we
used above. Since two of the opposite angles are 90◦, the resulting quadrilateral will
be cyclic.

Let h = lcm(c, c′) so h = nc and h = n′c′.
Let4WYX and4WY Z be similar to triangles ABC and A′B′C ′ respectively with

WY = h, then by similar triangles, x = na, y = nb, z = na′, w = nb′ then x, y, z, w are
the sides of a cyclic quadrilateral with integer area.

For example, if we take Pythagorean triads (3, 4, 5), (5, 12, 13), h = lcm(5, 13) = 65,
so n = 123, n′ = 5 and (39, 52, 25, 60) are the desired side lengths with area, 1764.

Can you find a cyclic quadrilateral with consecutive integer sides and integer area?
I leave this with you as a challenge problem to either find such a quadrilateral or prove
that no such quadrilateral exists.
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