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SOLUTIONS TO PROBLEMS 931-940

Q.931 In a large flat area of bushland there are two fire-spotting towers, one exactly
20km east of the other. A bushfire is reported as being due north-east of the western
tower, and simultaneously due north-west of the eastern tower. However each of these
directions could be in error by up to 1◦ either way. Find the total area within which the
fire might be located

a. by a simple approximate argument;

b. exactly.

ANS. Consider the following diagram (in which the 1◦ angles have been magnified for
clarity). The fire must be located within ABCD.

(a) Since ∠DAB = 88◦, ∠BCD = 92◦ and ∠ABC = ∠CDA = 90◦, ABCD is very
nearly a square. AlsoNL is almost a 2◦ arc of a circle with radiusOW = 20/

√
2 = 10

√
2.

Hence

area ABCD ' NL2 '
(

2

360
× 2π × 10

√
2

)2

=
2π2

81
.

(b) To find the exact area, recall that ∠ABC = ∠CDA = 90◦, and note that AB = AD
and BC = DC. Thus ABCD can be divided into two congruent right-angled triangles
4ABC and4ADC, and

area ABCD = 2× 1
2
(AB)(BC) = (AB)(BC).

Clearly the four angles at O are all right angles. Hence

AB = WB tan 2◦

= WK cos 1◦ tan 2◦

= (WO +OK) cos 1◦ tan 2◦

= (WO + EO tan 1◦) cos 1◦ tan 2◦

= 10
√
2 (1 + tan 1◦) cos 1◦ tan 2◦;
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similarly

BC = (EO −OL) cos 1◦ tan 2◦

= 10
√
2 (1− tan 1◦) cos 1◦ tan 2◦

and the area is

200(1− tan2 1◦) cos2 1◦ tan2 2◦ = 200(cos2 1◦ − sin2 1◦) tan2 2◦

= 200 cos 2◦ tan2 2◦.

(Check: to six decimal places, this area is 0.243743 km2, while the approximation in (a)
is 0.243694 km2.)

Q.932 Four weary explorers have to cross a bridge over a river one night. Owing
to their various degrees of exhaustion, they would individually take 5, 10, 20 and 25
minutes (respectively) to cross the bridge. However, the old and rickety bridge will
take only one or two people at a time. Furthermore, it is too dangerous to cross the
bridge in the dark, and the expedition has only one torch. How can all four explorers
cross the bridge in the least possible total time?

ANS. The fastest scheme is as follows (by “5” I mean “the person who can cross in 5
minutes”, and so on):
5 and 10 cross the bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 minutes
5 returns with torch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 minutes
20 and 25 cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 minutes
10 returns with torch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 minutes
5 and 10 cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 minutes
Total, 60 minutes.

To confirm that the task cannot be accomplished in less than 60 minutes, note that
at least eight journeys must be made (three crossings by two explorers, and two re-
turns by one explorer); and that each person must make an odd number of trips. It is
clear that to complete the transfer in under 60 minutes, 25 and 20 must make only one
trip each. If they make separate trips, these will take 25 and 20 minutes respectively;
there must be one other trip involving two explorers and taking 10 minutes; and two
additional trips taking (at least) 5 minutes each. The total time would be at least

25 + 20 + 10 + 5 + 5 = 65 minutes,

which is too long. Therefore 25 and 20 must cross together. Now there are to be three
crossings involving two people, so 10 must cross twice and return once; and the fifth
trip must consist of 5 returning alone. So the minimum total time for the transfer is

25 + 10 + 10 + 10 + 5 = 60 minutes,

as claimed.

Q.933
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a. In how many ways can 1994 be written as the sum of (one or more) consecutive
positive integers?

b. Prove that for any positive integer n, the number of ways of writing n as the
sum of (one or more) consecutive positive integers is equal to the number of odd
factors of n.

c. Deduce from (b) that a positive integer can be written as the sum of two or more
consecutive positive integers if and only if it is not a power of 2.

ANS. We solve (b) first. If n is the sum of k consecutive positive integers starting at a,
we have

n = a+ (a+ 1) + · · ·+ (a+ k − 1) = 1
2
k(2a+ k − 1)

and so
2n = k(2a+ k − 1). (∗)

Given n, we wish to find a and k. Note that the difference between k and 2a+ k − 1 is
2a−1, an odd number; so one of the factors in (∗) is odd and the other even. Moreover,
k < 2a + k − 1. Thus all solutions of (∗) are given as follows: let d be an odd factor of
2n; then 2n/d is even. If d < 2n/d solve

k = d, 2a+ k − 1 = 2n/d

to find a and k; if d > 2n/d solve

k = 2n/d, 2a+ k − 1 = d.

For every odd factor of 2n we find exactly one solution. But an odd number is a factor
of 2n if and only if it is a factor of n. Therefore the number of solutions is the number
of odd factors of 2n, which is the same as the number of odd factors of n.

In the particular case n = 1994 = 2×997, there are only two odd factors of n, namely
1 and 997. The corresponding values of a and k are given by

k = 1, 2a+ k − 1 = 3988 so a = 1994

k = 4, 2a+ k = 1 = 997 so a = 497.

Thus we have
1994 = 1994 = 497 + 498 + 499 + 500,

a sum of one or four consecutive integers.
To solve (c), note that an integer can always be written as the “sum” of one consec-

utive integer (namely, itself), and, from above, it can therefore be written as the sum
of two or more consecutive positive integers if and only if it has at least two odd fac-
tors. But every integer has 1 as an odd factor, and only powers of 2 have no other odd
factors.

Q.934 Prove that there is no polyhedron (solid figure bounded by plane surfaces) hav-
ing 7 edges, but there is one with any number of edges greater than 7.
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ANS. Suppose that there is a polyhedron with seven edges. Let f3, f4, . . . be the number
of faces of the polyhedron which are triangles, quadrilaterals, . . . respectively; and let
v3, v4, . . . be the number of vertices at which respectively 3, 4, . . . edges meet. Now we
can count the total number of edges by counting three for every triangular face, four for
every quadrilateral and so on; but we must remember that every edge will be counted
twice by this method. So

3f3 + 4f4 + 5f5 + · · · = 14. (1)

Similarly, considering the vertices yields the equation

3v3 + 4v4 + 5v3 + · · · = 14. (2)

Also, Euler’s well-known formula F + V = E + 2 becomes in this case

f3 + v3 + f4 + v4 + f5 + v5 + · · · = 9. (3)

Taking equation (1) plus (2) minus three times (3),

(f4 + v4) + 2(f5 + v5) + · · · = 1.

But note that none of the terms on the LHS may be negative; hence

f5 = v5 = f6 = v6 = · · · = 0

and either
f4 = 1, v4 = 0

or
f4 = 0, v4 = 1.

Subtracting (1) from (2) and rearranging,

3(f3 − v3) = −4(f4 − v4) = ±4

which is impossible as f3 − v3 is an integer.
To show that any number of edges greater then 7 is possible, consider a square

pyramid, a triangular prism and a pentagonal pyramid: these have 8,9 and 10 edges
respectively, and each has at least one triangular face. On one triangular face of each
solid construct a shallow triangular pyramid: this gives three extra edges, thus creating
polyhedra with 11, 12 and 13 edges. Each of these still has a triangular face, so the
procedure may be repeated to give any number of edges greater than 7. (Comment:
there is also a polyhedron with 6 edges, namely, a triangular pyramid.)

Q.935 A triangle has integer sides. Each side is divided into intervals of length 1 and
the midpoint of each interval is marked. Prove that it is possible to draw a continu-
ous path, linking all these midpoints and returning to its starting point, subject to the
following conditions:

a. every point is visited once, and no point is used more than once (except that the
first point is the same as the last);
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b. successive points on the path must come from different sides of the triangle.

ANS.Let the lengths of the three sides be a ≥ b ≥ c; note that a ≤ b + c. Write k =
b+ c− a ≥ 0. Then the path formed by visiting the sides in the order

k triples︷ ︸︸ ︷
abc · · · abc

b−k pairs︷ ︸︸ ︷
ab · · · ab

c−k pairs︷ ︸︸ ︷
ac · · · ac a

satisfies the requirements of the question.

Q.936 Find all solutions in positive integers of

6x2 + 3y2 + 6z2 − 8xy − 8yz + 10xy = 6.

ANS.Rearranging the equation,

(2x− y + z)2 + (x− y + 2z)2 + (x− y + z)2 = 6.

Now the only way to write 6 as the sum of three squares is

6 = 22 + 12 + 12.

Thus 2x − y + z, x − y + 2z, x − y + z must be ±2, ±1, ±1 in some order. Now the
equations

2x− y + z = a

x− y + 2z = b

x− y + z = c

can be solved without much difficulty to give

x = a− c, y = a+ b− 3c, z = b− c.

Noting that x − y + z is strictly smaller than the other two expressions, the possible
values for (a, b, c) are

(2, 1,−1), (1, 2,−1), (1,−1,−2), (−1, 1,−2),

which yield the following four solutions for (x, y, z) :

(3, 6, 2), (2, 6, 3), (3, 6, 1), (1, 6, 3).

Q.937 An n× n chessboard has a number of beans placed on each square. The squares
in the top row contain (from left to right) 1, 2, 3, . . . , n beans; in the second row n +
1, n+2, n+3, . . . , 2n; and so on, ending with n2 beans in the bottom right hand corner.
It is permitted to select any two rows and remove from each square in one of them
the number of beans in the corresponding square in the other one. For example, if
one row contains 1,4,3 beans and another 2,7,4 the latter may be changed to 1,3,1; then
in the next move, the first row may become 0,1,2. “Negative beans” are not allowed
(for example, no change is possible on the above rows containing 0,1,2 and 1,3,1 beans
respectively).
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a. After performing the above operation as many times as you wish, what is the
smallest possible remaining number of non-empty rows on the chessboard?

b. What is the minimum possible total number of remaining beans?

c. What are the answers to (a) and (b) if we allow not only the above operation on
the rows of the chessboard, but also a similar operation on the columns?

ANS.(a) The board can be reduced to two non-empty rows as follows. First subtract
row n − 1 from row n; then row n − 2 from row n − 1; and so on, finally subtracting
row 1 from row 2. This leaves the following situation:

1 2 3 · · · n
n n n · · · n
n n n · · · n
...

...
...

...
n n n · · · n

Now subtracting the second row from each subsequent row leaves only the first two
rows non-empty. It is not possible to reduce the board to a single row; for if it were so,
the original configuration must have consisted entirely of multiples of this row, which
is clearly not the case.
(b) From the situation above consisting of rows of (1, 2, 3, . . . , n) and (n, n, n, . . . , n)
beans, subtract the first from the second to give

(1, 2, 3, . . . , n) and (n− 1, n− 2, n− 3, . . . , 0),

a total of n2 beans. We shall prove that this is the minimum possible. In what follows,
to add or subtract two rows means to add or subtract the numbers in corresponding
squares:

(a1, a2, . . . , an)± (b1, b2, . . . , bn) = (a1 ± b1, a2 ± b2, . . . , an ± bn);

and to multiply a row by a constant means to multiply each number by that constant:

s(a1, a2, . . . , an) = (sa1, sa2, . . . , san).

First note that every row initially can be written in terms of two possible rows: row k
is

(kn− (n− 1), kn = (n− 2), kn − (n− 3), . . . , kn)

= s(1, 2, 3, . . . , n) + t(n− 1, n− 2, n− 3, . . . , 0)
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where s = k, t = k − 1. On subtracting one row from another we obtain a row

[s(1, 2, 3, . . . , n) + t(n− 1, n− 2, n− 3, . . . , 0)]

− [s′(1, 2, 3, . . . , n) + t′(n− 1, n− 2, n− 3, . . . , 0)],

that is,
(s− s′)(1, 2, 3, . . . , n) + (t− t′)(n− 1, n− 2, n− 3, . . . , 0),

which is still expressed in terms of the two basic rows. Now by repeating row-subtractions
we can never entirely eliminate either of these rows; for if so, then every row would
initially have been a multiple of one row, which, as we saw above, is impossible. Thus
the minimum total number of beans consists of one of each basic row, that is, n2 beans.
(c) By using subtraction of columns as well as rows we cannot reduce the board to
fewer than two rows. First note that a row-subtraction (say, row k minus row k′) and a
column-subraction (say, column ` minus column `′) will give the same result irrespec-
tive of which occurs first. This is because any square on the board other than that in
row k, column ` is altered by only one (or neither) of these altered operations; and if
row k, column ` contains c beans, if row k, columnn `′ contains a and if row k′, column
` contains b, then performing the row-subtraction first leaves

(c− b)− a

beans in row k, column `, while performing the comumn-subtraction first leaves

(c− a)− b,

which is the same. Now since row and column-subtractions may be interchanged,
we can assume that all the row-operations take place first, leaving at least two non-
empty rows, and then the column-operations. But a row cannot be entirely emptied by
column-operations, so there must still remain two non-empty rows.

We can, however, reduce the total number of beans. First, as in (a), reduce by row-
subtractions to

(1, 2, 3, . . . , n) and (n, n, n, . . . , n),

with all other rows empty. Then subtract column n − 1 from column n, column n − 2
from column n− 1, . . . , column 1 from column 2, leaving

(1, 1, 1, . . . , 1) and (n, 0, 0, . . . , 0).

Finally subtract column n from all others, giving

(0, 0, 0, . . . , 1) and (n, 0, 0, . . . , 0),

a total of n+ 1 beans.

Q.938 Let α be a constant, not a multiple of π. Show that the x-axis is tangent to the
curve

y = x− sinx− (1− cosx) tanα
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at the origin; and that it is also tangent elsewhere if and only if tanα − α is a multiple
of π.

ANS. Note that the question as given was slightly incorrect; a revised version appears
above. The x-axis is tangent to the curve if and only if there is a point x at which y and
dy
dx

are simultaneously zero, that is,

x− sinx− (1− cosx) tanα = 0. (1)

1− cosx− sinx tanα = 0. (2)

It is easy to see that if x = 0 these equations are both true, so the x-axis is tangent to
the curve at the origin. Now suppose there is a solution x 6= 0. Rearrange (2) as

cosx = 1− sinx tanα, (3)

square both sides,
cos2 x = 1− 2 sinx tanα + sin2 x tan2 α,

subtract cos2 x from each side and write sin2 x instead of 1− cos2 x,

sin2 x− 2 sinx tanα + sin2 x tan2 α = 0,

factorise and write sec2 α for 1 + tan2 α :

sinx (sinx sec2 α− 2 tanα) = 0.

If sinx = 0 then (1) and (2) become

x− (1− cosx) tanα = 0, 1− cosx = 0,

so x = 0. But this is the case we have excluded. Therefore we must have sinx sec2 α −
2 tanα = 0, that is,

sinx = 2 tanα cos2 α = 2 sinα cosα = sin 2α. (4)

Substituting in (3),

cosx = 1− 2 sinα cosα tanα = 1− 2 sin2 α = cos 2α. (5)

From (4) and (5),
x = 2α + 2nπ

for some integer n. On the other hand, substituting (4) and (5) back into (1) gives

x = 2 sinα cosα + 2 sin2 α tanα = 2 tanα(cos2 α + sin2 α) = 2 tanα

and so we have
2 tanα− 2α = 2nπ,

that is, tanα− α = nπ, a multiple of π, as claimed.
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Conversely, if tanα− α = nπ then choose

x = 2 tanα = 2α + 2nπ.

Then

sinx = sin 2α = 2 sinα cosα

1− cosx = 1− cos 2α = 2 sin2 α

and it is now easy to check that (1) and (2) hold.

Q.939 Which of the statements in the following list are true?

1. At least one odd-numbered statement in this list is false.

2. Either the second or third statement in this list is true.

3. This list does not contain two consecutive false statements.

4. There are at least two false statements in this list.

5. If the first statement in this list is deleted, the number of true statements will
decrease.

ANS. Before we can determine whether statement 5 is true or false we must consider
what happens when the first statement is deleted: that is, consider statements 2,3,4 and
5 only (in that order).

Suppose statement 4 is true. Since it is the third statement in this list, 2 is also true.
Now 4 says (truly) that the list contains (at least) two false statements, so 3 and 5 are
false; but then the list does not contain two consecutive false statements, so 3 is true
after all. This is impossible; so statement 4, which we assumed to be true, must in fact
be false. This being so, the list contains only one false statement (namely, statement 4
itself) and three true statements.

Now we return to the complete list of five statements. The fifth says that the list
contains four or five true statements. If this is true then there is only one false state-
ment, or none at all, in the list; so 3 must be true. Now consider statement 1. Since we
know that 3 and 5 are true, 1 says (in effect) “this statement is false”. Such a statement
can be neither true nor false, so we have an impossible situation. Thus statement 5
must, after all, be false. It follows immediately that 1 is true. If statement 4 is false then
(since we know 5 is false) there are at least two false statements, and so 4 is in fact true.
(Summary: so far we know that 5 is false while 1 and 4 are true.) Finally, if statement 3
is true then so is 2; but this is impossible as there would be four true statements, mak-
ing statement 5 true. Therefore statement 3 is false, and to get two consecutive false
statements in the list, 2 must also be false.
Answer: statements 1 and 4 are true, and statements 2, 3 and 5 are false.
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Q.940 Write a polynomial p(x) in the following form:

p(x) = a0 + b0x+ c0x
2 + d0x

3 + a1x
4 + b1x

5 + c1x
6 + d1x

7 + a2x
8 + · · · ,

where all the coefficients are real numbers. Show that p(x) is divisible by x2 + 1 if and
only if

a0 + a1 + · · · = c0 + c1 + · · · and b0 + b1 + · · · = d0 + d1 + · · · .

ANS. First note that the polynomial y + 1 is a factor of yk + 1 for odd k, and of yk − 1
for even k. Replacing y by x2, we see that x2 +1 is a factor of x6 +1, x10 +1, x14 +1, . . .
and also of x4 − 1, x8 − 1, x12 − 1, . . . . Therefore

x2 = x2 + 1− 1 =M2 − 1

x4 = x4 − 1 + 1 =M4 + 1

x6 = x6 + 1− 1 =M6 − 1

x8 = x8 − 1 + 1 =M8 + 1

and so on, where each Mk is a multiple of x2 + 1. Hence

p(x) = (a0 + c0x
2 + a1x

4 + c1x
6 + a2x

8 + · · · )
+ x(b0 + d0x

2 + b1x
4 + d1x

6 + · · · )
= (a0 + c0(M2 − 1) + a1(M4 + 1) + c1(M6 − 1) + a2(M8 + 1) + · · · )

+ x(b0 + d0(M2 − 1) + b1(M4 + 1) + d1(M6 − 1) + · · · )
= (a0 − c0 + a1 − c1 + a2 − · · · ) + x(b0 − d0 + b1 − d1 + · · · )

+ (c0M2 + a1M4 + c1M6 + a2M8 + · · · )
+ x(d0M2 + b1M4 + d1M6 + · · · ).

Divide p(x) by x2 +1. Since every Mk is divisible exactly by x2 +1, the remainder is

(a0 − c0 + a1 − c1 + a2 − · · · ) + x(b0 − d0 + b1 − d1 + · · · ).

Thus p(x) is divisible by x2 + 1 if and only if this remainder is identically zero, that is,

a0 + a1 + · · · = c0 + c1 + · · · and b0 + b1 + · · · = d0 + d1 + · · · .

Alternative solution (for those familiar with complex numbers). Since p(x) has real
coefficients,

p(x) is divisible by x2 + 1

⇔ p(x) is divisible by x− i
⇔ p(i) = 0

⇔ a0 + b0i− c0 − d0i+ a1 + b1i− c1 − d1i+ a2 + · · · = 0

⇔ a0 − c0 + a1 − c1 + a2 + · · · = 0 and b0 − d0 + b1 − d1 + · · · = 0

which is the required result.
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