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A PURELY GEOMETRICAL PROOF OF HERON’S FOR-
MULA

Esther Szekeres1

The famous formula of Heron connects the sides, a, b, c of a triangle with the area, A of
the triangle, i.e.

A =
√
s(s− a)(s− b)(s− c),

where
s =

a+ b+ c

2
.

In a recent issue of Parabola we have seen a largely algebraic proof of this formula
(“Heron’s formula and some mysterious triangles” by Peter Brown.) In this article I
am going to show a purely geometrical proof of it. We will connect it with properties
of the inscribed and escribed circles which are worth while studying for their own
interest as well.

It is well-known that every triangle has an inscribed circle, i.e. a circle which is
tangent to all 3 sides of the triangle. We shall denote its centre, the incentre, by I , its
radius, the inradius by ρ. Given the triangle, ABC, we can find I , by bisecting the 3
angles of the triangle. These 3 bisectors are concurrent at I . The proof of this fact is not
difficult, but it uses some ideas that keep on recurring in geometry. Take any point P
on the bisector of angle A and drop perpendiculars from P to AB and AC. The lengths
of these perpendiculars represent the distances of P from AB, respectively AC. It is
easy to prove, using congruent triangles, that these two distances are equal to each
other. Furthermore, if P is a point not on the bisector of angle A, then its distances
from AB and AC are different in length. This fact is expressed briefly by the statement
that the anglebisector is the locus of the points equidistant from the two sides of the
angle. Similarly, the bisector of angle C is the locus of points equidistant from CA and
CB. Let these two bisectors meet at I . Then I is a point equidistant from AB and AC
as well as from AC and BC, consequently I is a point on the bisector of angle B as
well. The 3 perpendiculars from I to the sides of the triangle are equal in length, call it
ρ, then the circle drawn with I as centre and ρ as radius will be tangent to the 3 sides.
This is the incircle.

Now extend AC to Y and AB to Z (figure 1) and bisect ∠Y CB. Let this anglebi-
sector meet the extended line AI in E1. Then, using again the locus property of the
anglebisectors, we may conclude that E1 is equidistant from CY , CB and BZ, so it
is the centre of a circle which is tangent to the 3 sides of the triangle externally. Let
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Figure 1

the radius of this circle be ρ1. There are 3 such “excircles” or escribed circles, each be-
ing tangent to one of the sides of the triangle as well as to the extensions of the other
two sides. It is a rewarding experience to the reader to construct a fair-sized general
triangle, together with its incircle and the 3 excircles.

There is an easily established relation between ρ and the area of the triangle. Join I
to each vertex, A,B,C this divides the triangle into 3 smaller4’s, each with altitude δ,
base being a side of the triangle, so

A = ρ
a+ b+ c

2
= ρs (1)

Similarly, we can see that

A = ρ1

(
b+ c− a

2

)
= ρ1(s− a) (2)

Multiplying (1) by (2), we get
A2 = ρρ1s(s− a). (3)

Theorem I Let the incircle be tangent to BC at X , to AC at Y and to AB at Z. Then:

AY = AZ = s− a,
BZ = BX = s− b,
CY = CX = s− c.

Theorem II Let the excircle drawn around E1 touch BC at X1, CY at Y1 and BZ at Z1.
Then

AY1 = AZ1 = s,

CY = CX1 = s− b,
BZ1 = BX1 = s− c.
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We left the proofs of these theorems as a challenge to the reader. They appear as
exercises at the end of our article.

Now let us return to Heron’s formula. Consider the triangles4CIY and4E1CY1.
Both are rightangled (at Y , respectively Y1). We are going to prove that they are similar
triangles, i.e. their remaining two angles are also equal to each other. CI and CE1 are
bisectors of the internal and external angles at C, which add up to 180◦, so ∠ICE1 =
90◦.

Therefore
∠Y1CE = 90◦ − ∠Y CI = ∠Y IC.

Corresponding sides of similar triangles are proportional to each other, so

Y I ÷ Y C = CY1 ÷ Y1E1.

Using the results of Theorem I and II,

ρ÷ (s− c) = (s− b) : ρ1,

or
ρ× ρ1 = (s− b)(s− c) (4)

Substituting this into equation (3) we get:

A2 = s(s− a)(s− b)(s− c),

which is Heron’s formula.

Exercises:

1. Prove Theorems I and II from the article about Heron’s formula.

2. Given the lengths of ρ, ρ1 and BC, describe how to construct4ABC, using only
a compass and a straightedge.
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Solutions:

1. Theorem I, following the notation of Fig. 1: AY = AZ, CY = CX, BX = BZ,
being tangents from a point to the circle.

Then

2AY + 2CX + 2BX = a+ b+ c = 2s,

∴ AY = s− (CX +BX) = s− a,

similarly the others.

Theorem II.

AY1 = AZ1

so 2AY1 = AC + CY1 + AB +BZ1

= AC + AB + CX1 +BX1 = b+ c+ a = 2s1

and CY1 = AY1 − AC = s− b.

2. Using Theorem I and II.

CY = s− c
CY1 = s− b ∴ CY + CY1 = Y Y1 = (s− c) + (s− b) = BX1 + CX1 = BC.

We first draw BC to be in the position of Y Y1, then Y I = δ, Y1E1 = δ1, both
perpendicular to Y Y1. So we can draw the incircle and excircle, then CB is a
common internal tangent and AB is the line of a common external tangent.
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