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THE BACHET EQUATION

P.G. Brown

It is impossible to overestimate our debt to the ancient Greeks in a wide range of sub-
jects including mathematics. Some people, however, seem to believe that the Greek
contribution to mathematics was only in the area of geometry. It is interesting to note
that many algebraic identities such as (x + y)2 = x2 + y2 + 2xy were well known to
the ancient Greeks, and Euclid proves that xy +

(
x−y
2

)2
=

(
x+y
2

)2 in Book II, proposi-
tion 5. He does this, of course, geometrically using areas of squares and rectangles.
However, by the time we come to the Greek mathematician Diophantus (c.250 AD),
the geometric aspects of the mathematics he presents have almost completely disap-
peared, and he is thinking ‘algebraically’ rather than geometrically. Diophantus poses
a large collection of ‘number theory’ problems which he then proceeds to solve, giving
fairly general methods, but applied to specific examples. Diophantus did not have al-
gebra, as we understand it, at his disposal. He used the symbol ς for our x, along with
some other symbols for powers, e.g. 4Y (from the Greek word δuναµiς , dunamis,
meaning ‘power’ whence our word ‘dynamite’) for x2 and letters of the Greek alpha-
bet instead of our number system. For example 4Y γ̄ς δ̄ ⇑ Ṁ ε̄, was his way of writing
3x2 + 4x − 5. Despite this clumsy and cumbersome notation he was able to do some
quite sophisticated mathematics. In what follows, I use modern notation.

Diophantus’ work, (or what survives of it) formed the basis for modern algebra and
number theory, and was seriously studied by many mathematicians including Fermat
and Euler. Attempts to generalise some of his examples led to famous and difficult
problems including Fermat’s Last Theorem which was only recently solved. In Book II
problem 8, Diophantus posed the problem:

“To divide a given square number into two squares”, and proceeds to divide 16
as 42 =

(
16
5

)2
+

(
12
5

)2. Fermat read this and noted in the margin of his copy of the
book that it was not possible to divide a cube into two cubes, a biquadrate (fourth
power) into two biquadrates etc. In modern terms, he claimed that xn + yn = zn has
no positive integer solutions for n > 2. As is well known, he claimed to have a proof
but didn’t write it down. This is the famous Last Theorem of Fermat, but it’s statement
was motivated by a problem in Diophantus.

A much less well known, but perhaps equally difficult problem which has not been
completely solved, concerns the solutions (if any) of the Bachet equation (sometimes
called Mordell’s equation), y2 = x3 + k.

To be more precise, given k, an integer, when does this equation have integer solu-
tions?

The question first arose (as far as I know) in a problem in Diophantus, Book VI
problem 17, where he asks how:
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“To find a right-angled triangle such that the area added to the hypotenuse gives a
square, while the perimeter is a cube”.

Diophantus’ solution is very clever. He sets up the triangle
with shorter sides 2 and a and hypotenuse y2− a, so the area
added to the hypotenuse is y2, i.e. a square. To satisfy the
second condition he requires the perimeter, 2 + y2 to be a
cube,

i.e. he wants 2 + y2 = x3 or y2 = x3 − 2 (which is the Bachet equation with k = −2).
At this stage Diophantus cleverly puts y = m + 1 and x = m − 1 giving the cubic

equation
m3 − 3m2 + 3m− 1 = m2 + 2m+ 3

and then states that m = 4 without giving any reasons. As you may know, the cu-
bic was not generally solved till about 1500 AD, so how did Diophantus get m = 4?
Possibly, he wrote the equation as

m3 +m = 4m2 + 4

so
m(m2 + 1) = 4(m2 + 1)

and equated the factors. As he didn’t know about complex numbers, he ignored the
other roots m = ±i.

Anyway, he thus found the solution y = 5, x = 3, and so his
triangle has sides 2, a, 25−1. By Pythagoras’ Theorem he then
obtains a = 621

50
. Notice that Diophantus allowed fractional

solutions to his problems, but not negatives.

In fact x = 3, y = ±5 are the only integer solutions to the equation y2 = x3 − 2. It
is not clear whether Diophantus knew this or not, and it was not proven ‘till the 18th
century. The proof was due to Euler, but Fermat had noted the fact (without proof) in
the margin of his copy of Diophantus.

The edition of the Greek text of Diophantus that Fermat used was prepared by
Claude-Gasper Bachet, a contemporary of Fermat, and appeared in 1621. This edition
along with Fermat’s marginal notes was reprinted by Fermat’s son, after his death. It
is from this that the Bachet equation got its name. If k is a square or a cube then it is
sometimes possible to solve the equation without too much work. Fermat was able to
show for example that y2 = x3−4 has (x, y) = (2,±2), (5,±11) as its only solutions. For
many values of k, e.g. k = −5,−6,−10,−14 etc. the equation has no integer solutions.

For many years people worked on the equation for different values of k and either
found no solutions or only a finite (and generally small) number of integer solutions,
but no general results or methods were found. One such person was L.J. Mordell (1888-
1972) who solved the problem for many values of k and attempted to find some general
properties of the solutions. He proved that for given k the equation has only finitely
many solutions. Finally in 1966 Alan Baker of Cambridge University was able to give
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a finite procedure for determining all the solutions for a given k. This procedure was,
however, very complicated and it took a little time before a practical computational
method could be developed for actually implementing Bakers’ ideas. They were first
applied to the equation y2 = x3 − 28 to get the (complete list of) solutions (x, y) =
(4,±6), (8,±22), (37,±225). The remaining unsolved problem concerning the equation
is to find a simple general condition on k which determines whether or not the equation
has integer solutions.
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