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SOLUTIONS

JUNIOR DIVISION

Q.1. Let n be a positive integer. If the polynomial
(z+1)(z+2)(z+3) - (z+n)
is expanded, (a) find the sum of all the coefficients; (b) find the sum of the
coefficients of odd powers of z.
ANS. Let the expanded polynomial be
p(z) = ap + ey + azz® + - + apz” .
(a)The sum of all the coefficients is
ap+ay+ar+-+a,=p(1)=2x3x4dx---x(n+1)
=(n+1).
(b)Let = —1. We have
p(-1)=ay—a; +az—az+--xan,
where the final sign i1s + if n is even and — if n is odd. Thus
p(-1)=(aot+az+--)—(ar+azg+---),
the sum of the even coefficients minus the sum of the odd coefficients. On the other

hand,
z)=(z+1)(c+2)(z+3) - (z+n)

and so p(—1) = 0. Hence the sums of even and of odd coefficients are the same, and
each equals 1(n + 1)!.
Q.2. Let a;,az,...,an,b1,b2,...,bs be positive real numbers. Prove that at least one of
the numbers ai  ag i
by T by b
is greater than or equal to
a+az+--+an
by+bo+- b

ANS. Let -:—E be the largest of the n fractions. We have
k

a _a +atoota,
be b+br+-+bn

_arby Farby + -+ apbn —a1bi — agby — -+ —anbi
bi(by + b2 + -+ + by)
_ (apby — a1 b)) + (axby — agbe) + -+ + (arbn — anby) ()
bi(by + by + -+ + bn)
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Now

axby — arby = byby (;& ” gl) >0
k 1

: ag . . s .

since — is the largest of the n fractions; by a similar argument, every term in the
k

numerator of (*) is positive or zero. Hence

ag a1 +aa+ -+ an
676 - I3‘1""‘-’2'*""'b‘n

as required.

Q.3. Four points are located in a plane. For each point, the sum of the distances to the
other three is calculated; and these four sums are found to be the same. Determine

all possible configurations of the four points.
ANS. Consider a quadrilateral as shown.

It is given that
PQ+PR+PS=PQ+QR+QS=PR+QR+RS=P5+QS+RS.

Consequently
(PQ+ PR+ PS)+(PQ+QR+QS)= (PR+ QR+ RS)+ (PS+ QS + RS)

and simplifying yields PQ = RS. Similarly PR = QS and PS = QR. Therefore all
four triangles AQPS, APQR, ASRQ and ARSP are congruent (three equal sides)
and the four angles ZQPS, ZPQR, £SRQ and ZRSP are equal. So PQRS is a

rectangle.

Q.4. Let n be a positive integer. Find the number of ordered triples of integers (z,v, #)
for which all four of the inequalities

z>0,y>20,220 and z+y+z=<n

are true.
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ANS. First suppose that z = 0. Then we have
y=20, 220 and y+z<n.
The solutions of these inequalities are
(n,0);
(n-1,0), (rn—1,1);

EL0), (L), A28, s (e =103
(0,0), (0,1), (0,2), ..., (0,n—1), (0,n);
and the number of solutions is
142+ +n+(n+1)=4n+1)(n+2).
Next let z = 1. Then the inequalities to be solved are
¥20, 220 and y+2<n-1,
and by the same argument the number of solutions is sn(n +1). Continuing in the
same way, the total number of solutions is
%(n+1){n+2]+%n(n—l—l]+%{n—1]n+'--+%x2><3+%x1 x 2
=§[(r+1)(n +2)((n +3) — n) + n(n + 1)((n +2) - (n - 1))
+t(r=1n((n+1)=-(n-2))+ - +2x3x(4-1)
+1x2x(3-0)]
=3n+1)(n+2)(n+3)-n(n+1)(n+ 2)
+n{n+1)n+2)—(n-1n(n+1)
+(n—=1)n(n+1)—(n=2)(n—1)n
+-r+2x3Ix4—-1x2x3
+1x2x3—0x1x2]
=in+1)n+2)(n+3).
Q.5. Prove that if n > 4 then any triangle can be dissected into n isosceles triangles.
ANS. First observe that a right-angled triangle can be dissected into an isosceles triangle
and a right-angled triangle. The following diagrams show how this is done, firstly in

the case of a right-angled isosceles triangle (where in fact each subtriangle is both
right-angled and isosceles), and secondly in the case of any other right-angled triangle.

I
n

By repeating this operation on the smaller right-angled triangle (or by leaving the
original triangle untouched) we see that a right-angled triangle can be dissected into
a right-angled triangle and any number of isosceles triangles (including zero).
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Secondly, a right-angled triangle can be divided into two isosceles triangles as shown.

Combining this with the previous dissection we get a dissection of any right-angled
triangle into two or more isosceles triangles.

Finally, any triangle can be dissected into two right-angled triangles;

Tl

if n > 4 then these two triangles can be divided into 2 and n — 2 isosceles triangles,
giving a dissection of the original triangle into n isosceles triangles.

Q. 6. A collection of 1995 numbers consists of one zero and 1994 ones.

(a) It is permitted to choose any two numbers from the collection and replace each of
them by the average of the two. Is it possible by repeating this operation to obtain a
collection in which all 1995 numbers are the same?

(b) It is permitted to choose any two or more of the numbers (but not the whole
collection) and replace each of them by the average of the chosen numbers. Is it now
possible to make all the numbers equal?

ANS. (a) No, it is not possible. Note that since at each stage we are replacing each of
two numbers by their average, the sum of all 1995 numbers never changes. Thus if the
required result were possible, all the numbers would have to end up as %?;3—"5. However,
if we write all the original numbers as fractions then every denominator is a power of

2 [}_D 1
'—2_0r —ﬁr

and if we average two fractions with powers of 2 in the denominator we obtain

l(a 5)_2“41-1—2'“5

z\gntam) = gm0

which still has a power of 2 for its denominator. Thus it is impossible to reach a

fraction such as 135= in which the denominator is not a power of 2.

14



(b) Yes, this is possible. First replace 0,1,1,1 and 1 by their average. Now five of
the numbers are  and the other 1990 are ones. We can split this collection up into
five groups, each consisting of a 3 and 398 ones; and the average of each group is

1 4 1994
399 (39“ 5) = 1995 °

Thus all numbers in the collection are now the same.

k &k % & % % x %

Continued from p.4

which is Heron’s formula.

Exercises:

1. Prove Theorems I and II from the article about Heron’s formula.

2. Given the lengths of p, p; and BC, describe how to construct AABC, using only a

compass and a straightedge.
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SOLUTIONS TO SENIOR DIVISION QUESTIONS

Q.1. Let a,az,...,8n,b1,b2,...,bn be positive real numbers. Prove if the numbers

aj az an
b T by T b
are not all equal, then at least one of them is greater than the fraction

ay+ax+--+an
bl+bz+"'+bn

and at least one is less than this fraction.

ANS. 1 Suppose a,b,c,d are positive real numbers and % then we shall show

a a + c atce
- b d
S i < d Suppose ad < be, then ad+ab < be+ab, a(b+-: < b(a.+f:) o e
a c
Similarly ad < be, ad + cd < be +cd, d(a+c) < e(b+ d), b+; < 7
Assume i;i < — s 2 . i=1,,n—1, by relabelling. Now since the n quotients are
i =+1

_ - S
not equal there is a pair w1th i o et
b: + big1  bir

Hence by i — 1 steps
di-1 ai—1 t+ Gi + ai41 a; + ais1

<
biy  bici+bi+biyn b+ by

ay Gl"‘""l'ﬂi-l—l{_”{ai-]-i
by + -+ bia = biya2

Next by n — i steps
ap _ 4 + e+ a3z itz . Git3
< =
By bi 4+ bigs b='+¢ bits
a a1+az+*--+a,.
—_ < < —.
by bitbater+by b

ALT. ANS.
Suppose, without loss of generality, that
a an
=g S Sy,
Then a; = kby then ag > kby, az = kbsy 2 ---an > kb, since at least one quotient is
> k.
Hence

Gt oy Bhokbatot kb o
WP T e e TR i
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Similarly
p @+ - +ay

bn byt be
Q.2. A collection of 1985 numbers consists of one zero and 1994 ones.

(a) It is permitted to choose any two numbers from the collection and replace each of
them by the average of the two. Is it possible by repeating this operation to obtain a

collection in which all 1995 numbers are the same?

(b) It is permitted to choose any two or more of the numbers (but not the whole collection)
and replace each of them by the average of the chosen numbers. [s it now possible to

make all the numbers equal?

ANS, 2a
The collection initially consists of one 0 and 1994 1's, The first step either leaves the
set unchanged or yields two 1/2's and 1993 1's. The average of the set is 1994/1995
and if the numbers are all equal this must be their value. However 2% « 1995 < 211
5

and the process only generates numbers of the form % since % ‘;f‘ + g} = g; some

3, ¢. Hence the process does not work.

ANS. 2b
1995 = 5.399. Proceed as follows:

Take the zero and four 1’s, average them producing five 4/5’s. Next group each 4/5
with 398 1’s and average them yielding 399 1994/1995’s. Hence we now have all the
numbers equal. Clearly the method works for any n provided n (in this case 1995) is

not prime.

Q.3. Show that it is possible for a cube and a plane to intersect in a regular hexagon, but

impossible for a cube and a plane to intersect in a regular pentagon.

17



ANS. 3
Consider the cube of side length 2 with vertices (0,0,0), (0,0,2), (0,2,0), (0,2,2), (2,0,0),

(O-P: JJJ

(2,0,2), (2,2,0) and (2,2,2).

(00,9) <] @2

0,00

Every plane in R? is of the form az + by + ¢z = d. (This is obvious if ¢ = 0 when one
obtains a plane parallel to the z-axis meeting the z,y-plane in az + by = dr).
Consider the plane z + y + z = 3! This meets the edges of the cube in six points P =
(2,0,1), P, = (1,0,2), Ps =(0,1,2), P; = (0,2,1), Ps = (1,2,0) and Ps = (2,1,0).
It also passes through C' = (1,1,1) the centre of the cube. Now if d is the distance
between A = (ay, az,as) and B = (by, by, bg) then d* = (a1 —by 2 4(ag—ba)?+(as—b3)?
hence
(PyPy)? = P,P? = PyP} = PP = PP} = Ps P}
=CP!=CP}=CP}=CP]=CP}=CF; =2.

Thus P, P - - - Ps is a regular hexagon, with edge length V2.

A plane can meet a cube in a pentagon, for example,

However, if it does four of the sides form parallel pairs. Thus the pentagon is not

regular since in a regular pentagon all angles are 108° = 3 /5. Incidentally a plane
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can also meet a cube in an equilateral triangle (near a vertex) or a square.

Q.4 (a) Unit cubes are arranged into an 20 x 18 x 15 block. A straight line is drawn from
one corner of the block to the diagonally opposite corner. How many unit cubes does

the line pass through?
(b) Repeat the question if the block has dimensions a x b x c.

ANS. 4a
By similar triangles it is easy to see that the typical point on the long diagonal of the
cube has coordinates (20¢, 18¢, 15¢) with 0 <¢ < 1.

_ (0,185

(2oL, 181,151,

(0:0,0)
The planes dividing the block into cubes are z =4, 0 << 20; y =7, 0< j <18
and z =k, 0< k < 15.

Hence, the line moves from one block to another when t = 2_"0. or .1'-% or % We shall

count the number of cubes entered, that is, the number of values of ¢ of the given

form, 0 <t < 1. Let A be the number of multiples m of 5% with 0 < m < i, B

1 1
' £ = i o
multiples o i3 C multiples of 5

A

JAUBUC|=|A|+|B|+|C|-|ANB|-[ANC| - |BNC|+|ANBNC]



1
Now |A| = 20, |B| = 18, |C| = 15. If m is a multiple of 20 and 5 then m = 0
or 1/2 so |An B| = 2. Similarly |ANC| =35, [BNC|=3 and [ANBNC|=1. So

JAUBUC|=20+18+15—2—3—5+ 1= 44. So the line passes through 44 cubes.

Q.5. On an island there are a number of towns, and a number of roads linking the towns.
Each town is the junction of exactly three roads. A traveller sets out along a road
from one town, and at the next town takes the left hand road of the two available. At
the following town the right hand road is taken, and so on, with left and right turns

alternating. Prove that at some stage the traveller must return to the first town.

ANS. 5

The number of towns is finite and there are only six ways of entering and leaving
any given town. Hence the traveller must eventually pass through some town T twice

entering and leaving in the same direction. From this point on the traveller loops for

4

Suppose that after two loops the traveller turns around and retraces his steps — turning

ever.

left where he turned right and vice versa. This reverses the journey staying on the

loop hence the initial town is on the loop at least once and up to six times!

Q.6. If z is a real number, [#] denotes z rounded up to the next integer. (If  is itself an

integer then [z] is the same as z.) Prove that if n is a positive integer then

(1] + [ 03]+ [ 8] -+ [ 5])

+ (11995+21995+31995 ++-++n1995)

is equal to

r‘.'IS'SIﬁ +n1995 ;
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ANS. 6
[l?ﬂﬁﬁ.l =1

[1995@'[ i
Also [zl =2 if 2<az<219%
2] =3 if 21995 41 <z <3199
[£]=n if (n—1)'"E 11 < g nl®S
Hence the sum
e (21995 =118 4 (31995 _ 21995)3 g {nmss —(n—- 1}”95]:‘1
411995 4 91995 , (r — 1)1595 4 1995
=1-2414+29%(2-34+1)+3"%3B-4+1)+---
+(n=1)""B(n—1)-n+1}+n'*5(n+1)

S nl'}!?ﬂ 18 n1995'

This tomb holds Diophantus. Ah, how great a marvel! The tomb tells
scientifically the measure of his life. God granted him to be a boy for the sixth
part of his life, and adding a twelfth part to this, He clothed his cheeks with down;
He lit him the light of wedlock after a seventh part, and five years after his
marriage He granted him a son. Alas! lateborn wretched child; after attaining the
measure of half his father’s life, chill Fate took him. After consoling his grief by
this science of numbers for four years he ended his life.
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