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Q.941

ANS.

SOLUTIONS TO PROBLEMS 941-948

On my desk calendar two numbers are given: the number of days in the year
up to today, and the number remaining. (For example, on New Year’s Day the
numbers were 1 and 364.) What date could it be if the two numbers have the
same digits, possibly in a different order? (No number may start with a zero.)

Will the answer to this question be the same next year?

Let the numbers be abc and def, where a,b,¢ and d.e, f are the same digits

(except for order). Writing out the sum of the two numbers

a b ¢
+ d € F
3 6 5

and remembering that 1 may need to be carried from one column to the next, we

see that a + d, b+ € and ¢ + f are respectively
3,6,5 or 2,16,5 or 3,3,15 or 2,15,15.

Since every digit occurs twice, the sum o + b+c+d+ e+ f is even and we can
reject the second and third cases. To obtain the 3 in the first case two of the
digits must be 1 and 2; the sum of the digits, taken twice each, s 3+6+5 = 14;

so the third digit is 4. This gives the answer
124 + 241 = 365.
In the fourth case @ = d = 1 and the other two digits add up to 15, so we have
169 + 196 = 365 or 187 = 365.
So the possible day numbers are
124,169,178, 187,196,241

giving dates of May 4, June 18, June 27, July 6, July 15 and August 29.
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Q.942

ANS.,

Next year the same ideas, together with the fact that the year has 366 days,

will give the unique answer of July 1.
(1) Find positive integers z,y such that
z% — 2y® = —1.
(ii) Show that if (z,y) is a solution of the above equation then (3z +4y, 2z + 3y)
is also a solution.

(iii) Prove that there are infinitely many non-negative integers n such that n? +

(n + 1)? is a square.
(i) By trial and error, z = y = 1 will do.
(ii) If 2% — 2y = —1 then
(3z +4y)* —2(22 + 3y)? = (92* + 242y + 16y?) — (822 + 247y = 18y%)
= 2% _ 292
=

(iii) Consider the equation
n’+(n+1)? = m?, (%)
Multiplying both sides by 2 and rearranging, we have
(2n +1)% —2m? = -1,

Nowlet z=2n+1, y = m. From (i), the equation 2% — 2y? = —1 has a solution;
and from (ii), any solution leads to a larger solution. Thus the equation has
infinitely many solutions. Also it is clear that is odd, so n is an integer. Hence
(*) has infinitely many non-negative integer solutions.

Comment. From (i) and (ii) we can find the first few solutions
(z,y) = (1,1), (7,5), (41,29), (239,169),- - -
which give
(r,m) =(0,1), (3,5), {20,29), (119,169),-- -,
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and we may check that

0% 412 =12, 3% +42 = 5%, 207 +217 =297, 119? 4 120% = 169%,- -

Q.943 Prove that if az,a2,--*,an and 71,2, ,%n are positive numbers then
a (24 ﬂ"
(@12 +agzz + -+ anTa)(= + 824 )2 (atat o +an)

Under what conditions does equality hold?

ANS, First note thatif z > 0 then

1 13
g 2+(f ﬁ) =

i . 1 ; .
with equality when /z — py = 0, that is, z = 1. Now expand the given product.
T
We obtain n terms
]
ai? ag!‘ L =
and whenever i < j there are also two terms

ag g Iy Tj
a;TE— + a;jx;— = 4idj == ==
o xj

= Ea,-a;,:,
i Tj Ty

. ey ;
using the above result with z = 1*_= Hence the LHS is at least
i

a?+a%+---+ai + 2aya; + 2a1a3 + - + 20a-18n

which is the expansion of (a1 +a2 + -+ an)?. The two sides are equal if and

o i 2 i
only if == = 1 for every t,j; that is, if 1,72, *,Tn areall equal.
T

Q.944 If nis large, find a simple approximate formula for

1 4 9 (n—1)* n?
\/1‘;¥+\/1‘;?+\/1‘:13+*"+V1‘T+ 1-2
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Q.945

ANS,

Consider the following diagram.
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—
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alg
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A
The kth-rectangle from the left has height equal to the y-coordinate on the

k2
‘y=1|,’1-n-§

2
and therefore has area 11‘,1' 1- fc— (The nth rectangle has height 0 and is there-

fore invisible.)

. k :
circle when # = — that is,
mn

It is clear from the diagram that adding the areas of all these rectangles will
give approximately the area of the quarter circle, and that the approximation will

become better and better as n becomes larger. S0 if n is large we have

n—l n?  nr
= s

approximately.

A regular polygon with n sides is inscribed in a circle. If A, B,C and D are four
successive vertices of the polygon then the length of AD equals the side of the
polygon plus the radius of the circle. Find all possible values of n.

Let the radius of the circle be r. The angle subtended at the centre by one side
15 26, where § = —. The side length will be 2rsiné, and the length of a chord

compassing three su.'les (AD in the question) will be 2r sin 34. Using the formula
sin 38 = 3sinf — 4sin® 4
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we have
9rsin3f = 2rsinf +r
= 6sinf—8sin® @ =2sinf+1
= sin*f—lsinf+§=0.

This is a cubic in sin#; a little trial and error gives sinf = 1 asone solution. So
(sinf — %)(si‘f + 3sind — =0

and apart from the solution sin@ = } we have also the solutions of the quadratic

~3E(EP+L 145

sinf = 5 = 7

It was shown in an earlier problem (see p-32 of Parabola 29(1)) that

w1+ vB _ 3n_14V5
L e R T T T

Thus the solutions are
3%
10" 10

and the polygon has 6,10 or —% sides. The third of these answers, however,

=

| =

makes no sense geometrically. Or does it? You might like to consider the following

TN

diagram.

NXL
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Q.946 (i) Show that if n is an integer,

n 2 0, then 247+2 | 1 5 divisible by 5.
(ii) Factorise ztn

+4intoa pmduct of two polynomials,
in4
(iii) Show that if n = 2 then g4l

ANS. (i) We have

1s composite.

24_n+2+1=4x16“+1=4{]5+1)n+1-

By the Binomial theorem,

(15 +1)" = 157 4 (;‘)15“‘1+---+(n’_‘_1) 15+1

= (a multiple of 5) + 1:
hence

2742 4 1 =4 x ((a multiple of 5)+1)+1

= (a multiple of 5)+441
which is divisible by 5.

(ii) We can write the polynomial as a difference of two squares;

_,rln B (;':2" 4 2]2 e 4m2n

=(n®" + 22" 4 2)(2?" 2:+9).

(iii) Substituting z = 2 and replacing n by n 4 1 in the Previous part,

24n+-l b= (22n+2 4 2n+2 + 2){22n+2 = 2n+2 o 2)

and so

24“-'-2 5, .= (221‘!'!‘1 i 21‘14-1 £ 1)(22ﬂ+1 - 2ﬂ+1

+1).

Now we know from (i) that 5 is a factor of the left hand side: so if the quotient

is not composite then the factorisation on the right hand side must be

5x1 or (a prime) x 5.

Hence the smaller factor ; is less than or equal to 5, which is impossible since
22n+l 2n+l S (- (’2 - 1)2n+l 971
>3x8+1
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forn = 2.

ki &
Comment. If n =0 or 1 then by direct calculation

=1 or13.

Q.947 Three series of equidistant arallel lines are drawn in a plane, each series forming
P

an angle of 60° with the other two; the plane is thus covered with a network of

equilateral triangles. Is it, possible to find four of the intersection points of these

lines which form the vertices of a square?

ANS. It is impossible. This follows immediately when we show that a right-angled

isosceles triangle cannot be placed on the equilateral grid.

G Np N X SE-

JAVAVAVAVAVAVA

N AN IN 2N A

Suppose, on the contrary, that the points 4,B,C in the diagram form an
isosceles triangle with a right angle at C. Referring to the = and y directions as
shown, let the position of B relative to A be p units in the z direction and g in
the y direction; and the position of C relative to A, r units in the direction and
s in the y direction. (For the points shown, p = 2,q=3r=3s= —1.) By the
cosine rule we can calculate the lengths of AB and AC 3

AB? = p* +a® — 2pgcos 120°
=p +a’ +pg
and similarly
AC? =12 + 8% + 8.
But sinceABC is a right angled ssosceles triangle, AB? =2 X AC?, that is,

P 4 pg+a® =207 +rs+ ). (%)
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Q.948

ANS'

This shows that p? + pg+ ¢? is even. Therefore p and ¢ must both be even (if one

is even and the other odd then p? + pg + ¢? is even + even + odd, which is odd:

while if both are odd then p? + pg + ¢2 is odd + odd + odd, which again is odd).
Write p = 2p,, ¢ = 2¢;. Then (after simplifying)

P rrs4 s = 2008 + piga +4%)
and the same argument shows that r = 2ry, s = 2s,. Hence
P o+ g2 =2(r2 +rys, + 1)

and p; = 2pa, ¢1 = 2¢». Since this argument can be repeated indefinitely, we can
show that p is divisible by larger and larger numbers. But this is impossible for
non-zero itegers. Therefore () has no integer solutions except for P=g=r=
s =0, and it is impossible to locate a right-angled triangle (or a square) on the

equilateral triangluar grid.
An infinite sequence of real numbers a1,0a2,0s, - is defined by choosing some
value of a; and specifying

a, + ¢
1—ca,

Qni1 =

for n > 1, where ¢ is constant. Prove that for every integer k > 2. a constant ¢
can be found such that the sequence is periodic and has period k. (A sequence is
called periodic if at some stage it repeats itself from the beginning; the period of
the sequence is the smallest possible number of steps before the repetition begins.

For example the sequence 9 7.1,2,57,1,25,7.1,2 . hes period 4.)
If k> 2, choose ¢ = tan &+ We shall show that the sequence has period k. For
each n, choose 8, such that an = tan#,. Then the recurrence formula becomes

tand, + tan ¥
1 - tand, tan T’

tanf,1; =

that is,
tan b4y = tan(6, + %)
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by the “tangent of a sum” formula. Hence B.41 equals 8, +  plus a multiple of
7, say

m
Eﬂ+l = Hn + i + M

where m., is an iteger. Therefore, for any n > 1 and j = 1 we have

b
bnyj = Ontj-1 + 5 + Ma4;—1T

27
= Optj—2+ 5 (Mn4j-2)7

i

=0, + ? o {m'ﬂ-]-j—l +Mppj—2+- -+ Min )T
and so
m
n+j = tanbpy; = tan(fn + JT)
Therefore

Bpyk = taIl(ﬂn + ?T]I = tanf, = an

aso the sequence repeats after k steps; while if 0 < j < k then
an+j = tan(fn + %] # tanfn,

so the sequence does not repeat after fewer than k steps. Thus the sequence had

period k steps. Thus the sequence had period k.
Comment: it is impossible for a sequence satisfying the given recurrence to have
period 2. (Exercise: prove it!)
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