BRAHMAGUPTA'S FORMULA

Ian Woodhouse*

In the last two issues of Parabola two different proofs—one trigonometric and one geometric

-were given of Heron's formula for the area of a triangle and reference was made to Brahmagupta's

formula for the area of a quadrilateral. Brahmagupta lived in Central India during the 7th century

AD and in his best known work Brahmasphuta Siddhanta he published his famous formula

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d)}$$

for the area of a quadrilateral where a, b, c, d are the sides and s is the semiperimeter. As we will see this is true only for cyclic quadrilaterals.

Let the quadrilateral be defined as above. Now

$$|ABC| = \frac{1}{2}ab\sin\beta, \ |ADC| = \frac{1}{2}cd\sin\delta$$

and let

$$|ABCD| \equiv A = \frac{1}{2}(ab\sin\beta + cd\sin\delta)$$

so that

$$2A = ab\sin\beta + cd\sin\delta. \tag{1}$$

Now

$$AC^2 = a^2 + b^2 - 2ab\cos\beta \qquad = c^2 + d^2 - 2cd\cos\delta.$$

Therefore

$$a^{2} + b^{2} - c^{2} - d^{2} = 2(ab\cos\beta - cd\cos\delta). \tag{2}$$

Hence, by (1) and (2)

$$(a^{2} + b^{2} - c^{2} - d^{2})^{2} + (4A)^{2}$$

$$= 4(ab\cos\beta - cd\cos\delta)^{2} + 4(ab\sin\beta + cd\sin\delta)^{2}$$

$$= 4[a^{2}b^{2}\cos^{2}\beta - 2abcd\cos\beta\cos\delta + c^{2}d^{2}\cos^{2}\delta + a^{2}b^{2}\sin^{2}\beta$$

^{*}Ian Woodhouse is a mathematics teacher at Cherrybrook Technological High School.

$$\begin{aligned} &+2abcd\sin\beta\sin\delta + c^2d^2\sin^2\delta] \\ &= 4[a^2b^2 - 2abcd(\cos\beta\cos\delta - \sin\beta\sin\delta) + c^2d^2] \\ &= 4[a^2b^2 + c^2d^2 - 2abcd\cos(\beta + \delta)] \\ &= 4[a^2b^2 + c^2d^2 - 2abcd(2\cos^2\psi - 1)] \qquad \text{where } 2\psi = \beta + \delta \\ &= 4[a^2b^2 + c^2d^2 - 4abcd\cos^2\psi + 2abcd] \\ &= 4[a^2b^2 + 2abcd + c^2d^2 - 4abcd\cos^2\psi] \\ &= 4[(ab + cd)^2 - 4abcd\cos^2\psi]. \end{aligned}$$

Therefore,

$$(4A)^2 = 4(ab+cd)^2 - (a^2+b^2-c^2-d^2)^2 - 16abcd\cos^2\psi$$

$$= [2(ab+cd) - (a^2+b^2-c^2-d^2)][2(ab+cd) + (a^2+b^2-c^2-d^2)] - 16abcd\cos^2\psi$$

$$= [c^2+2cd+d^2-(a^2-2ab+b^2)][a^2+2ab+b^2-(c^2-2cd+d^2)] - 16abcd\cos^2\psi$$

$$= [(c+d)^2 - (a-b)^2][(a+b)^2 - (c-d)^2] - 16abcd\cos^2\psi$$

$$= [(c+d-a+b)(c+d+a-b)][(a+b-c+d)(a+b+c-d)] - 16abcd\cos^2\psi$$

$$= [(a+b+c+d-2a)(a+b+c+d-2b)][(a+b+c+d-2c)(a+b+c+d-2d)]$$

$$-16abcd\cos^2\psi$$

$$= [(2s-2a)(2s-2b)(2s-2c)(2s-2d)] - 16abcd\cos^2\psi \quad \text{where } s = \frac{a+b+c+d}{2}$$

$$= 2^4(s-a)(s-b)(s-c)(s-d) - 16abcd\cos^2\psi.$$
Thus, A^2 = $(s-a)(s-b)(s-c)(s-d) - abcd\cos^2\psi$

We have therefore proved that the area of a quadrilateral with sides a, b, c and d is given by

$$A = \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd\cos^2\psi}$$

where s is the semiperimeter and ψ is the average value of a pair of opposite angles.

When the quadrilateral is cyclic $\cos \psi = 0$ and we obtain the original formula of Brahmagupta. For such quadrilaterals it is easy to obtain a formula for the lengths of the diagonals. (This is another favourite of Brahmagupta.)

If the quadrilateral is cyclic $\cos \beta = -\cos \delta$ and equation (2) can be rewritten as:

$$a^2 + b^2 - c^2 - d^2 = 2(ab + cd)\cos\beta.$$

Therefore,

$$AC^2 = a^2 + b^2 - 2ab\cos\beta$$

$$= a^{2} + b^{2} - 2ab \frac{(a^{2} + b^{2} - c^{2} - d^{2})}{2(ab + cd)}$$

$$AC^{2} = \frac{(ac + bd)(ad + bc)}{(ab + cd)}$$

Notice that a corollary to Brahmagupta's formula is the following result:

A quadrilateral inscribed in a circle has an area greater than any other quadrilateral with the same sides.

It is not so clear that a quadrilateral with given sides a, b, c, d can be inscribed in a circle but here is an argument that this is the case.

Suppose $\beta + \delta > 180^{\circ}$ If we choose on BD produced an arbitrary point D_1 (such that $BD_1 \leq a+d,b+c$) then we can construct a quadrilateral A,B,C,D with sides a,b,c,d so that $\alpha_1 > \alpha$ and $\gamma_1 > \gamma$. But as D_1 varies so that $BD_1 \longrightarrow \min (a+d,b+c)$ it follows that $\beta_1 + \delta_1 \longrightarrow 0$, and in particular there is a choice of D_1 such that $\beta_1 + \delta_1 < 180^{\circ}$. But $\beta_1 + \delta_1$ is a "continuous" function of the variable $x = BD_1$. Therefore there is a choice of D_1 for which $\beta_1 + \delta_1 = 180^{\circ}$ and the resulting quadrilateral A, B, C, D, is cyclic.

Therefore we have proved:

Among the quadrilaterals having sides of the same lengths there exists a quadrilateral with maximum area. That quadrilateral is cyclic.

This theorem is a particular case of a theorem of Gabriel Cramer (1704-1752).

Among the polygons with given sides a_1, a_2, \dots, a_n (where $n \geq 3$) the polygon inscribed in a circle has the greatest area.