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DECIMAL - FORWARDS AND BACKWARDS
N.J. Wildberger*

A fraction is a2 number of the form E, where a, b are integers and b # 0. We learn to add,
substract, multiply and divide fractions on our mothers knee. The set of all fractions, or
rational numbers, is denoted @ and is closed under these operations as long as we remember
that dividing by 0 is not allowed. (By “closed” under addition we just mean that if we
add two rationals we get another rational.) At some later point we learn, perhaps to our
consternation, that there are other numbers which do not belong to @, and some of them
are even useful-such as /2, or 7. So we must enlarge our notion of ‘number’ so that we will
be able to incorporate and work with these irrational numbers as well.

The usual way of doing this is to consider infinite decimals like 1.414236. .. or 3.1415926.. . . .
More precisely, we consider objects of the form

+ G ...01080.d_3a_ad_3. ..

where each digit a; belongs to {0,1,..., 9} and the sequence continues indefinitely to the
right, although there are only a finite number of digits to the left of the decimal point. We
think of such a decimal as representing the sum

ﬂklﬂk oot ap 10 + ap + G._;.IU'I -+ a_zlﬂlz + 3-310-3 + ...

In this scheme, rational numbers end up being represented by repeating decimals, and con-
versely and repeating decimal is a rational number. There is a bit of ambiguity occasionally,
since non-zero numbers ending in an infinite string of zeros can be rewritten as to end in an
infinite string of 9’s. Thus

.56 = .56000... = .55999 . ..

both represent the fraction % We could avoid this ambiguity by insisting that no non-zero
decimals end in a string of zeros.

The set of all posssible decimals is a larger number system, also closed under addition,
substraction, multiplication and division by non-zero numbers, called the real number
system and denoted by R. Since fractions can be written as decimals, Q C R.

All very familiar, right? Well, let’s consider a simple question. How precisely do you add
two decimal numbers? How for example do we compute /2 4 7, where we’ll assume that the
expansion of both v/2 and 7 are given to us-perhaps in two (infinitely long) books, or better
yet, by two black boxes (computer programs perhaps?) that for each number will input an
integer n and output the n'" digit a,, .
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In 6" grade we learn to place one decimal above the other and add column by column,
remembering to start on the right, carry to the left and (in case we are substracting) borrow
from the left. Trouble is, there is no place to start at the right. The best it seems we can
do is to chop off both decimals somewhere, compute the sum of the two truncations as in
the example below and remove the possible ambiguity in the digit(s) at the tail by taking

larger and larger truncations.

1.41422136

+ 3.1415926
4.5558062

In the example, it is clear that the final digit 2 we obtained is possibly temporary -it might
end up being a 3 due to a later ‘carry’, or even a 4 perhaps? Could it end up being a
57 And exactly how far do we have to proceed with this algorithm before we can say with
certainly what the a_- digit (that is, where the 2 is presently) actually is? If you consider
the possibility that our summands have 100 5° and 4° respectively following the 6°, you see
that it might be necessary to calculate to the —107*" digit before we can be certain about
the —7*" digit.

In fact an unpleasant possibility arises _there might be an infinite string of such 5* and
4 (or any other combination of digits that result in an infinite row of 9% in the sum) without
us being in a position to predict it. Now if the two given numbers have decimal expansions
which are the result of finite computer programs (v/2 and = are of this kind) then we could
conceivably study these programs and determine externally if and/or when such strings of 9°
occur. But we can prove that most irrational numbers do not have decimal expansions of this
kind. This means that in general we have no way of knowing whether a given sequence of 9°
in a sum will carry on indefinitely. Thus it seems impossible for us to specify an algorithm
to add two arbitrary real numbers.

If addition is not as straight-forward as we imagined, what about multiplication? Surely
we should be at least able to multiply two fractions like = and % using decimals. Let’s try.

9
Writing the expansions of each, we get

07T
x__ .66666
46666
+ .04666
4+ .00466
+ .00046
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The first decimal under the line represents the product .7777 ... x .6, which we can persuade
ourselves is .4666... by employing our ‘truncation algorithm’ outlined above. The second
line is similarly .7777. .. x .06, and so on. Now we are faced with the more delicate problem of
adding up the resulting infinite stack of decimals. The problem of carrying is now increased—
carrys will become larger and larger as we move right. Try it do you get the ‘right answer’

of g = .518518518...7
Question. In general, how do we know this method actually works?
Question. Why is multiplication of decimals commutative? Why is it associative?
Addition and multiplication of decimals js subtle because carrying proceeds to the left
and the infinite decimals go off to the right. Wouldn’t it be easier if we had ‘decimals’
which went off to the left instead? That way, some of the problems just mentioned would
evaporate,
Let’s make it so. Declare a ‘revercimal’ to be a string like ...95141.3 or ...6666.349.

More precisely, we consider objects of the form
cee Q30301081 d_g .. L S

where each digit a; belongs to {0,1,.. .9} and the sequence continues indefinitely to the
left, although there are only a finite number of digits to the right of the decimal point.
Note however a significant difference with the decimal situation-we do not defined negative
reversimals). We would like to think of the above reversimal as representing the sum

oo« + aal0® + a310% + ;10 + g4 + a_1107" + 351072 ... +a_,10~*

although such an infinite sum does not ‘converge’ in the usual sense. Euler, the great Swiss
mathematician who lived in the 18t century, had no particular qualms about working with
such series-let us here follow his bold approach.

We will thus define addition, substraction and multiplication of revercimals exactly as
we do for finite decimals: start on the right, carry to the left, and if substracting, borrow
from the left. A few examples should suffice to get the hang of it...

1)
. 987321 .34
+ ... 2046935 .1
-1 92016 .44
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2)

2 3 4 6 8 5 1 3
- 4 7 8 9 410 2 7
7 55 7 4 4 1 0 3
3)
TTTTTI
% 6 6 6 6 6
6 6 6 6 2
+ 6 6 6 2 0
+ 6 6 2 0 0
-+ 6 2 0 0 0
+
4 8 1 4 8 1 4 8 2
1)
9 2. 9 2 2 3
333 3 3 4
8 8 8 8 ¢ 2
+ 6 6 6 6 9
+ 6 6 6 9
Lo .. 6 B 9
A4 8 1 4 81 4 8 2

How simple these operations are compared to the corresponding calculations with dec-
imals! No ambiguity or uncertainty, and, as we mentioned before, no negative revercimals
either. Thus to find a revercimal a such that .. .0514441.3 + @ = 0, we perform the following

and evaluate the a;* successively, starting from the right. (The answer is ...04848.7 = o)
(Those of you who have never felt entirely happy with ‘negative’ numbers can breathe a sigh

of relief.)
At this point, we do not know how to incorporate the rational numbers which are not

finite decimals into B. To do this, we employ a trick going back to Euler. He stated that for

any x, the doubly infinite series

...+1‘3—|—:t:2+;1:+1+1‘-!+..":_2-|—...
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is 0. In our context, we may use and justify this as follows. Consider for a moment the
‘doubly infinite’ decimal
O = s TRTTTRAT oo

Since multiplying by 10 moves the decimal over, 10a = a. Thus @ = 0 and so

i

22223, = — L TTTT. = TT7T... = g

Similarly for example, ...33334. — — . 6666, = ;, and
...B1481482. = — , . 018518518

= .518518518...

We see that the example 4) worked out earlier is Just the ‘revercimal’ form of the multipli-
cation U X == 57 that we computed earlier using the more dubious operations of decimal
arithmetic. In fact Euler’s ‘trick’ allows us to rewrite any rational as a revercimal. Here
another example which should get the reader firmly on the road to reversimal arithmetic.

To calculate — x =, we write
99 3’

g = 24 .6666...=2—...66666. = 2+ ...3334.
= ...3336.
g—g— = .131313... = —...131313. = ... BE6GE6RT.
Then the product is

6 8 6 8 6 8 6 8 7

... 3 3 3 3 3 33 3 6

2 1 21 21 21 ¢ 3

0 6 0 6 06 06 1 0

6 0 6 06 0 6 1 0 1}

0 6 0 6 06 100 0

6 0 6 06 1 00 0 0

0 6 06 1 0000 0

6 06 1 000 0 0 ¢

0 6 1 00000 0 0

6 1
1
4 9 8316 498 3 9
or —...50168350168. = .350168350168 . . . which is in fact the correct answer %

Question. Does this really work, and if so why?
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The problem of division, or equivalently of inverting revercimals still remains. Lets try
to invert a = ...73653. That is we look for a reversimal # = ...820180.6-1 - - - G- Such that
...af=1=...00...1 Thisis accomplished in this case by setfing k = 0, and solving for
ag, a1, a2 recursively. We first determine ap = 7 since the right most digit of the product
will be a 1, then proceed, choosing each digit successively so that the final sum is ...00001.
Hopefully the following will make this clear.

7T 3 6 5 3

*® 3 1 T
. & 5 % %

+ 3 6 5 3 0
+ 9 5 9 0 0
0 0 1

What makes this work is that for any digit d, we may find a digit m, such that the right
most digit of 3m is d. In other words, 3m = d(mod 10) has a solution for any d. This
number theoretic fact does no longer hold if we replace 3 with a number that has a common
factor with 10. For example, 2m = d(mod 10) does not have a solution for some values of d.
This inconvenience is solely due to our choice of 10 as the base of our number system; if we
replaced it with a prime p then the above argument would show that all non zero reversimals
in base p would be invertible. That would then be a pleasant situation indeed. The number
system so obtained we could denote by &j, or perhaps by @,.

However, other revercimals are also invertible. All repeating revercimals are, since they
are rationals, so is ...02. since ...002. % .. .00.5 = ...0001.

Question Are all non-zero revercimals invertible?

One of the most useful concepts in dealing with numbers is that of size. For the real
numbers, the absolute value of a number plays this role. It has the following basic properties.

Al) |z +yl Llel+ly] forallz,y€R

A2) |oy|=lzlly] forallz,y€R

To a first approximation, the size of a decimal z is 10* where k is the place of the left most
non zero digit of z. We now define a notion of absolute value for the reversimal numbers &
using a variant of this idea. If o is a reversimal with the rightmost non zero digit in the kth

spot, we declare
lor)o = 107F.

Thus for example |320;0 = ;5 and |...243.12|30 = 100. Thus the value |a|yo is always a power
of 10, and hence rational. It is then not hard to check that
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