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RAMSEY NUMBERS AND THE DESTRUCTIVE DEMON
Peter Brown

Combinatorial mathematics or combinatorics, as it is often called, is concerned with
problems of arrangement and counting. Although such problems were often studied for
their amusement or aesthetic value, they now have an important place in modern science,
especially with its new emphasis on computers and technology. You have probably solved
some kind of combinatorial problem at some time in your mathematical studies. For
example, in how many ways can 10 people stand in a line? There are 10 choices for the first
place, 9 for second, 8 for the third and so on, so there are 10.9.8---1 = 3,628, 800 possible
arrangements. This is a simple example of enumeration or counting. Combinatorial maths
also involves arrangement problems. For example, suppose we have the set of numbers
S ={1,2,3---7}. Can we form 7 subsets of size 3 with elements from S such that each
pair of elements is contained in exactly one subset?

A bit of trial and error leads to the following arrangement
{1,2,4}, {2,3,5}, {3,4,6}, {4.5,7}, {5,6,1}, {6,7.2}, {7, 1.3}

Such a collection of sets is called a block design (technically a (7,7,3,3,1)-design). Block
designs are extremely important in statistics as well as being of great interest in their
own right. One of the most difficult areas of combinatorial mathematics (if not of all
mathematics) is known as Ramsey Theory. Although difficult, it is possible for you to
get a glimpse of what it is about. The basic ideas were put forward by the English logician
Frank P. Ramsey and published in 1930. (Ramsey unfortunately died at the early age of
26: his brother became the Archbishop of Canterbury.) The easiest way to understand the
key idea is via a little graph theory. Arrange n dots {called vertices) in a circle and con-

nect every dot to every other dot by a line (called

an edge). We denote the corresponding diagram

(called a graph) by the symbol K. For example,
Ks, is drawn adjacent. Now, suppose we have K

and we colour each of its edges using the colours red
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or blue. I claim that somewhere in the picture is a
triangle that has 3 red sides or one that has 3 blue

sides regardless of how we colour the edges. This is

a favourite competition problem. For example, in

the accompanying diagram, AABD is red. (I use

dotted lines for blue and a solid line for red.)

Here is the general argument: Choose a vertex, say A. Now AB, AC,AD,AFE and
AF are coloured either red or blue, so at least three of them are red or three of them are
blue. Suppose for instance AB, AD, AE are red. Now if BD is red then HABD is a red
triangle, and similarly if DE or BE are red then AADE or AABE are red. If none of
these edges are red then they are all blue so ABDE is blue. Thus the coloured graph
always contains a red or a blue triangle.
Now we can describe a triangle as K3, and state the above result as: If the edges of
K are coloured red or blue then a red K3 or a blue A3 must be found inside the graph.
It is clear that if we took K7, Kg, etc, then the same thing must happen. For s this is
not true, as is shown in the diagram below.
Six is the smallest number that works. We call
this the Ramsey number R(3,3). In general, r =
R(n,m) is the smallest integer such that if the
edges of K, are coloured red or blue then the re-
sulting coloured graph must have a red A, or Ky
or a blue K, or K,, regardless of the colouring,
Suppose we wanted to know the Ramsey num-
ber R(4,4) and had a computer (and a good pro-
grammer) on hand. Could we evaluate the number?
Well, we could do this by cheeking all possible configurations. The value of R(4,4) is,
in fact, 18 so we would need to look at all the graphs up to Kg and show that R’ has a

red K4 or a blue Iy regardless of how we colour the edges, but that there were colourings
nin—1)
. 2

each edge can be coloured red or blue, so there are 27 (n=1) nossible colourings to check.

of K7 that do not contain a red or blue K;. Now K, has edges (why?) and
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For Kig alone, this gives about 10%® graphs to check. This number could be reduced by
symmetry arguments and possibly a powerful modern computer could then check all the
cases, but this is not possible for R(5,5), whose value is currently unknown. Below is
shown a table of the current state of knowledge. A number in the centre of a square is the
known exact value. A number at the top of a square is lower bound and a number at the

top of a square is an upper bound for the Ramsey number.

mn |3 4|5 6 7 8 9 10 11 12 | 13 | 14 | 15
40 46 51 G0 13 T3
s |e6[o|m|m | % (86 | & [ B[ E| M (07
4 18 25 35 49 33 [:3] B0 93 98 112 119 128
41 62 B85 116 151 191 238 291 349 417
5 43 58 80 95 114
49 87 143 216 a7 445
6 102
165 300 497 T84 1180
7 205
545 1035 1724 2842
8 282
1874 3547 6116
9 SH5
GGR0 15;35
10 23981

Many of the results in the table e obtained by intricate mathematical arguments
(generally similar to the argument we used to show R(3,3) = 6) rather than straight
number crunching. There are also formulae such as R(p,q) < R(p—1,9)+ R(p,q — 1)*
for integers p,¢ > 2 which are used to get some of the upper bounds (e.g. the bound for
R(9,10) in the table is arrived at using this).

There is an old joke, due to the famous mathematician Paul Erdés, which says:

Suppose the world were about to be destroyed by a powerful demon, who demanded
that we tell it the Ramsey number R(5,5). What should we do? The answer is, to get all
the mathematicians of the world to apply themselves day and night to finding R(5,5). Now
suppose that the demon wanted both R(5,5) and R(6,6). What should we do? The answer
is, to get all the scientists of the world to apply themselves day and night to work out how

to destroy the demon! The point of the joke is, of course, that with a huge amount of

* Editor’s Comment: This inequality was proved by George Szekeres over 60 years
ago in a joint paper he published with Paul Erdés. George is Emeritus Professor of Pure

Mathematics at UNSW and is a member of Parabola’s editorial board.
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effort it seems just possible to find R(5,5), but that the determination of R(6,6) probably

lies far off in the future.
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Continued from p.16

B1) |a+ 8| < min(|a] 4 |B|) for alla, B € R

B2) |af| < |al|g)| for all e, 8 € R.

Note the differences between these properties and the former ones. The reason that we
don’t get equality in property B2) is again related to the fact that 10 is not a prime; consider
for example taking absolute valued of the equation 2 x 5 = 10.

Property B1) has numerous curious consequences one of them is that any triangle formed
from three reversimals is isosceles. Perhaps the reader can discover others.
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A VERY SPECIAL CHESS PROBLEM

The following problem is due to L Yarosh. Its publication in the magazine Shakhmatny

v SSSR in 1983 caused considerable suprise. The problem is of the ‘white to play and mate

in 4’ type andhas a very remarkable solution, given on page 32.

White: Kf® Qal Rbl Rh4 Ba8 Bd8 Nb2 Nf7
Pa5 Paf Pcd Pd2 Pd7 Peb Pf2 Pi5
Black: Kd4 Qb8 Bf4 Pa2 Pb3 Pc5 Pe?l Pf6

L. Yarosh
Ist Prize, Shakhmatny 1983
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