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ALMOST ALL REAL NUMBERS ARE TRANSCENDEN-

TAL

C. Cox

(Reprinted from a Parabola article of 30 years ago!)

Doubtless the above heading will be to most of our readers quite cryptic and mean-
ingless. It is the purpose of this article both to explain what it means, by defining the
terms “almost all” and “transcendental”, and also to outline how it may be proved.

Not only was the result received with astonishment by mathematicians in 1874, but
the method used by the German mathematician G. Cantor in the proof sparked off a
controversy regarding its validity, which was largely responsible for the investigations
into the foundations of mathematics undertaken in the present century.

We begin with a discussion of some classes of real numbers. Our readers will cer-
tainly be familiar with the usual representation of real numbers as points on a number
line.

−2 − 1 0 + 1 + 2 + 3 + 4 + 5

√
2 e π

Some of these points correspond to integers (0, ±1, ±2, etc.) An apparently much

more numerous class consists of points corresponding to numbers of the form
p

q
where

p and q are both integers (q 6= 0). These are called rational numbers, and any interval of
the line, however short, contains an infinite set of rational points. It is not immediately
obvious that there are any points which do not correspond to rational numbers. The

discovery that the number
√
2 could not be expressed as a vulgar fraction,

p

q
, came as

something of a shock to early Greek mathematicians of the Pythagorean school.

That
√
2 is irrational can be proved by reductio ad absurdum:- Suppose

√
2 =

p

q
, a

rational number reduced to its lowest terms, p and q being integers with no common
factor. Since p2 = 2q2, it follows that p2, and therefore that p, is an even number. Sub-
stituting p = 2P, where P is an integer, we obtain 4P 2 = 2q2, q2 = 2P 2. Thus q2, and
therefore q, are also even, so that both p and q have the factor 2, contradicting our as-
sumption that they shared no common factor. This contradiction shows that

√
2 cannot

be rational.
Having found one irrational number it is easy to see that the irrationals are, also,

thickly distributed on the number axis; for example, the addition of any rational num-
ber r to

√
2 yields an irrational number r +

√
2, and this fact shows the assertion to be

true. (Prove that r +
√
2 is irrational).
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There is another important classification of the real numbers which we slall now
discuss.
“Algebraic numbers” are numbers which satisfy an algebraic equation, i.e. one of the
type
anx

n + an−1x
n−1 + · · ·+ a1x+ a0 = 0 where a0, a1, · · · , an are all integers.

Every rational number
p

q
is algebraic since it satisfies the equation qx − p = 0. The

irrational number
√
2 is algebraic since it satisfies the quadratic equation x2 − 2 = 0;

and r +
√
2 is algebraic if r =

p

q
, since it satisfies q2x2 − 2pqx+ p2 − 2q2 = 0.

Numbers which are not algebraic are called “transcendental numbers”. Again it
is not obvious that some real numbers are not algebraic. So far from obvious indeed,
that it was not until 1844 that the first transcendental number was found; in that year,
the French mathematician Liouville was able to show that, for example, the number
.1100010000000000000000010 · · · (the nth “1” occurs in the n!’th place) was not alge-
braic.

Liouville’s work remained for almost 30 years the only significant accomplishment

in this field. Then Charles Hermite, in 1873, showed that the number e = 1 +
1

1!
+

1

2!
+ · · · + 1

n!
+ · · · was also transcendental, using methods whose originality and ele-

gance won immediate admiration from his contemporaries. In view of its long history,
with just two isolated successes, problems associated with transcendental numbers
acquired a reputation (deservedly) for a level of difficulty demanding more than or-
dinary methematical ability (e.g. it was another 9 years before Lindemann was able
to extend Hermite’s method to show that π is transcendental). No wonder the mathe-
matical world was taken by surprise when in 1874 Cantor asserted that “almost all real
numbers are transcendental”.

This statement will still seemmeaningless to the reader even if we can show that the
class of transcendental numbers is infinite. For we have seen that there are infinitely
many algebraic numbers, and Cantor’s result seems to imply that one infinite class
contains, in some sense, many more elements than a second infinite class. Cantor’s
great contribution was indeed to give precise meanings to the phrases “set A contains
the same number of elements as setB” and “setA contains a larger number of elements
than set B” in such a way that they continue to make sense when the sets are infinite.
We shall consider each of these phrases in turn.

Two finite sets contain the same number of elements (or, equivalently, “have the
same cardinal number”) if and only if their elements can be paired off in such a way
that none are left over, unpaired, in either set. Thus if in a room every chair is occupied
by one person, and no-one is left unseated, it is quite clear that the set of chairs and
the set of people in the room have the same cardinal number. One says that there is
a (1 − 1) correspondence between the elements of the two sets. If it is possible to set
up a (1 − 1) correspondence between the elements of set A and set B, one says “set A
is similar to set B”. The process of counting the elements of a set consists in nothing
more nor less than setting up a (1− 1) correspondence between the elements of the set,
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and the set of natural numbers 1, 2, 3 · · · , n.
Cantor now defines, for infinite sets, the phrase “setA contains the same number of

elements as setB” to mean that it is possible to set up a (1−1) correspondence between
the elements of the two sets. This definition leads to some rather unexpected results.
For example, consider

1, 2, 3, 4, · · · , n, · · ·
l l l l l
2, 4, 6, 8, · · · , 2n, · · ·

which shows how a (1−1) correspondencemay be set up between the set of all positive
integers, and its subset, the set of all even positive integers. Thus, by the definition, the
set of even integers contains the same number of elements as the set of all integers. The
cardinal number of the set of natural numbers was called by Cantor ℵ0 (aleph null).
You will notice that the statement “set A has cardinal number ℵ0” is merely another
way of saying that set A is similar to the set of positive integers.

The accompanying diagram shows how the points in a
short line segment AB can be put (1− 1) correspondence
with the points in a longer line segment. Thus any two
line segments contain the same number of points.

Again consider

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, · · ·
l l l l l l l l l l l l l l l l
0

1
,

1

1
, −1

1
,

1

2
, −1

2
,

2

1
, −2

1
,

1

3
, −1

3
,

3

1
, −3

1
,

1

4
, −1

4
, −1

4
,

2

3
, −2

3
· · ·

In the second row the elements are the rational numbers
p

q
where p and q are relatively

prime, q > 0. They are arranged as follows:-
p1

q1
precedes

p2

q2
if

|p1|+ q1 < |p2|+ q2; or if |p1|+ q1 = |p2|+ q2 but |p1| < |p2|;

or if |p1|+ q1 = |p2|+ q2 and |p1| = |p2| but p1 > 0.

A little thought will convince you that any rational number
p

q
occurs sooner or later in

the second row. According to our definition the set of positive integers has the same
cardinal number as the set containing all rational numbers. A similar but slightly more
complicated procedure which we will omit shows likewise that the set of algebraic
numbers has cardinal ℵ0, i.e. can be put into (1 − 1) correspondence with the positive
integers.

At this stage you may be beginning to believe that all infinite sets have the same
cardinal number, that after all there is only one infinity. Such, however, is not the case.
We return to the second statement:- “Set A contains a larger number of elements than
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set B”. For finite sets this is true if and only if, when the elements of B are paired off
with the elements of A, there is at least one element of A left over, unpaired. That is, a
(1− 1) correspondence can be set up between the elements of B and the elements of a
subset of A, but not between the elements of B and all the elements of A.

This last sentence is taken as the definition of the statement:- “The cardinal number
of the set A is greater than that of the set B”, when the sets are infinite. Note that the
first part of the sentence is not sufficient by itself, and does not imply the second. We
have indeed already seen several examples of (1−1) correspondences between infinite
sets and subsets of themselves. The existence of such a correspondence is a property
which is always true of infinite sets and never of finite sets.

We can now produce an example of an infinite set whose cardinal number is larger
than ℵ0: the set of all real numbers lying between 0 and 1 is such a set.

To prove this we must, according to our definition, do two things. The first, which
is very easy, is to show that there is a (1−1) correspondence between the set of positive
integers and a subset of our set of real numbers. For example,

1, 2, 3, · · · n, · · ·
l l l l
1

2
,

1

3
,

1

4
, · · · 1

n+ 1
, · · ·

The second, much more difficult, problem is to show that no such (1 − 1) corre-
spondence between the positive integers and all the real numbers between 0 and 1
is possible. Suppose there is such a correspondence, and let cn be the real number
which corresponds to the integer n. i.e. we suppose it is possible to construct a list of
real numbers c1, c2, c3, · · · , cn, · · · which contains every real number between 0 and 1.
Each of these numbers can be represented by its decimal expansion (if the expansion
terminates we can pad it out by adding an unending string of zeros).

c1 = .c11c12c13 · · · c1n · · ·
c2 = .c21c22c23 · · · c2n · · ·
c3 = .c31c32c33 · · · c3n · · ·

. . . . . . . . .

. . . . . . . . .

cn = .cn1cn2cn3 · · · cnn · · ·
. . . . . . . . .

We now show that contrary to our supposition there is at least one number d, between
0 and 1, missing from this list.
In fact, let d = .d1d2d3 · · · dn · · · where the digits d1, d2, · · · , dn, · · · are chosen as
follows:

If c11 = 2, put d1 = 3; otherwise put d1 = 2.
If c22 = 2, put d2 = 3; otherwise put d2 = 2.
For every n, if cnn = 2, put dn = 3; otherwise put dn = 2.
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It is clear that d is a real number between 0 and 1. But it is not in the list. It is not c1
because its decimal expansion differs from that of c1 in the first decimal place. In fact,
it is not cn since its decimal expansion differs from that of cn in the nth decimal place.

This contradiction shows the impossibility of including all real numbers between
0 and 1 in a single unending list: the cardinal number c of this set is greater than ℵ0.

It is easy to see that the set of all real numbers also has cardinal number c and it then
follows that the set of transcendental numbers also has cardinal c.

In fact, it is clear from these results that not only is c > ℵ0, but ℵ0 is so negligible in
comparison with c, that removal of a set of cardinal ℵ0 from a set of cardinal c can never
make any significant change at all in the number of elements in the set: the remaining
set still has cardinal number c. A set of cardinal c cannot be built up by putting together
any finite number (however large) of sets of cardinal ℵ0 : in fact, not even if ℵ0 such
sets are put together.
In view of these facts, the statement “almost all real numbers are transcendental” is
quite justified.

(Reference: D. Pedoe, The Gentle Art of Mathematics, Ch. III).
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