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SOLUTIONS TO PROBLEMS 957-965

Q.957 Solve the three simultaneous equations

ab

a+ b
=

1

2
,

bc

b+ c
=

1

3
,

ac

a+ c
=

1

9
.

ANS. Clearly a, b and c are non-zero. Therefore we may take the reciprocal of each

equation and split up the fractions to obtain

1

a
+

1

b
= 2 ,

1

b
+

1

c
= 3 ,

1

c
+

1

a
= 9 .

Adding the three equations and dividing both sides by 2 we have

1

a
+

1

b
+

1

c
= 7 ;

using this and the previous three equations we get

1

a
= 4 ,

1

b
= −2 , 1

c
= 5

and therefore
a =

1

4
, b = −1

2
, c =

1

5
.

Q.958 By considering (2 +
√
3)n and (2 −

√
3)n show that the equation x2 − 3y2 = 1

has infinitely many integer solutions.

ANS. First note that (
2 +
√
3
)n(

2−
√
3
)n

=
(
4− 3

)n
= 1 .

Expanding the first factor by the binomial theorem,(
2 +
√
3
)n

= 2n + n 2n−1
√
3 +

(n
2

)
2n−2 3 +

(n
3

)
2n−3 3

√
3 + · · ·

= xn + yn
√
3 ,

where

xn = 2n +
(n
2

)
2n−2 3 + · · · and yn = n 2n−1 +

(n
3

)
2n−3 3 + · · · .
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Since binomial coefficients are integers we see that xn and yn are also integers. The
binomial expansion of the second factor can be found simply by replacing

√
3 by−

√
3 ;

thus (
2−
√
3
)n

= xn − yn
√
3 .

Substituting these expressions back into our first equation gives(
xn + yn

√
3
)(
xn − yn

√
3
)
= 1 ,

that is,
x2n − 3y2n = 1

for any n; and as noted above, xn and yn are integers. Comment . ¿From the above
relations we can actually derive explicit formulae for the solutions of the equation,

xn =

(
2 +
√
3
)n

+
(
2−
√
3
)n

2
and yn =

(
2 +
√
3
)n − (2−√3 )n
2
√
3

.

¿From above we know that xn and yn are integers despite the square roots in these
formulae!

Q.959

(a) Suppose we are given 100 positive integers x1, x2, . . . , x100 between 1 and 100, 000, 000, 000.
Prove that for at least two of these numbers, say xi and xj , the sum of the digits
of xi is the sum of the digits of xj (e.g, if xi = 1416 and xj = 222222 then the sums
of the digits are the same).

(b) Suppose we have n + 1 real numbers where n ≥ 2. Prove that for two of these
numbers a and b we must have

0 ≤ a− b
1 + ab

< tan
π

n
.

ANS.

(a) The integer in the given range with the largest sum of digits is 99, 999, 999, 999,
and the sum is 99. Therefore, there are only 99 possible different sums of digits
for integers in the given range, and if we are given 100 integers then two of them
must have the same sum of digits.

(b) Taking the inverse tangent (in radians!) of the n + 1 given real numbers yields
n+1 real numbers between −1

2
π and 1

2
π. Since we have n+1 numbers all within

an interval of length π, two of the numbers must be separated by less than
π

n
. Let

α be the larger and β the smaller of these two numbers; then

0 ≤ α− β < π

n
.
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Now α = tan−1 a and β = tan−1 b, where a and b are two of the given numbers;
since the graph of y = tanx is always increasing from 0 to 1

2
π we may take the

tangent of all three terms in the above inequality to give

0 ≤ tan(α− β) < tan
π

n
.

On the other hand, we can apply the tangent-of-a-difference formula to the mid-
dle term to obtain

tan(α− β) = tanα− tan β

1 + tanα tan β
=

a− b
1 + ab

and this completes the proof.

Q.960 Suppose there are 499 students and 500 numbered lockers in a school. Initially
all the lockers are open. The students line up and the first student closes every second
locker, beginning with locker number 2. The next student then examines every third
locker, beginning with locker number 3, and closes each locker if it is open whilst
opening if it is closed. The remaining students continue this opening and shutting
process. (The third student examines every fourth locker and so forth). Which lockers
are open at the end of the procedure?

ANS. A locker changes from being open to closed, or vice versa , whenever it is exam-
ined by a student. So a locker, initially open, will be open at the end of the procedure if
and only if it is examined an even number of times. But since the first student looks at
every second locker, the second at every third and so on, locker n is opened or closed
once for each factor of n other than 1, and hence the lockers which remain open at the
end are those for which n has an even number of factors excluding 1, that is, an odd
number of factors altogether. Now any factor a of n can be paired with the factor n/a,
and collecting all these pairs gives an even number of factors. The only way to get an
odd number is if for some a, the factors a and n/a are actually the same, that is, n = a2.
Thus at the end of the procedure, the open lockers are those with square numbers, that
is, lockers 1, 4, 9, 16, 25, . . . , 441 and 484.

Q.961 Suppose a, b and c are roots of the equation x3 − x2 − x− 1 = 0.

(a) Show that a, b and c are distinct.

(b) Show that

a1000000 − b1000000

a− b
+
b1000000 − c1000000

b− c
+
c1000000 − a1000000

c− a

is an integer.

ANS.
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(a) A polynomial has two (or more) equal roots if and only if the polynomial and its
derivative are simultaneously zero. By long division,

x3 − x2 − x− 1 = (3x2 − 2x− 1)(1
3
x− 1

9
)− 8

9
x− 10

9
;

if x3−x2−x−1 and 3x2−2x−1 are both zero then x = −5
4

, and it is easy to check
that this is not in fact a root of the equation. Thus the three roots are distinct.

(b) In fact
ak − bk

a− b
+
bk − ck

b− c
+
ck − ak

c− a
is an integer for any positive integer k. This can be proved simply by induction:
for k = 1, 2 and 3 the expression is respectively 3, 2(a+ b+ c) and

(a2 + ab+ b2) + (b2 + bc+ c2) + (c2 + ca+ a2) = 2(a+ b+ c)2 − (ab+ bc+ ca) ;

all three of these expressions are integers since the relations between roots and
coefficients of a polynomial tell us in this case that a+ b+ c = 1 and ab+ bc+ ca =
−1. Let k ≥ 1 and assume that the given expression is known to be an integer
when the exponent is k, k + 1 and k + 2. The cubic equation can be multiplied by
xk and rearranged to give the equation

xk+3 = xk+2 + xk+1 + xk ,

which is true for x = a, b and c. Hence

ak+3 − bk+3

a− b
+
bk+3 − ck+3

b− c
+

ck+3 − ak+3

c− a

=
ak+2 − bk+2

a− b
+
bk+2 − ck+2

b− c
+
ck+2 − ak+2

c− a

+
ak+1 − bk+1

a− b
+
bk+1 − ck+1

b− c
+
ck+1 − ak+1

c− a

+
ak − bk

a− b
+
bk − ck

b− c
+
ck − ak

c− a

is a sum of three integers, and this completes the proof by induction.

Q.962 Prove that

1× 3× 5× . . .× 99

2× 4× 6 . . .× 100
= (1− 1

2
)(1− 1

4
) . . . (1− 1

100
) <

1

12

[Hint: Try to discover a general result which can be proved by induction.]
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ANS. First note that since 9
10
< 10

11
, 11
12
< 12

13
, and so forth, we have(

9× 11× · · · × 99

10× 12× · · · × 100

)2

=
9

10
× 9

10
× 11

12
× 11

12
× · · · × 99

100
× 99

100

<
9

10
× 10

11
× 11

12
× 12

13
× · · · × 99

100
× 100

101

=
9

101

and so
9× 11× · · · × 99

10× 12× · · · × 100
<

√
9

101
<

3

10
.

Therefore

1× 3× 5× · · · × 99

2× 4× 6× · · · × 100
<

1

2
× 3

4
× 5

6
× 7

8
× 3

10
=

21

256
<

21

252
=

1

12
.

Q.963 Starting from home I drive a certain distance due East. Then I turn 90◦ left and
drive another distance, then turn left again and so on until I have driven 4n segments.
Suppose the lengths of these segments are 1, 2, 3, . . . , 4n kilometres but not necessarily
in that order.

(a) What is the greatest distance I can eventually be from home?

(b) Can I end up at home?

ANS.

(a) Clearly the greatest distance will be obtained if we choose two directions, say
north and east, and always go as far as possible in these directions and as little
as possible in the others. So if we let N,S,E,W be the total distance travelled (in
the positive sense) in each of the four directions, we will want

N+E = (2n+1)+(2n+2)+· · ·+4n = n(6n+1) and S+W = 1+2+· · ·+2n = n(2n+1) .

Now let V be the overall distance travelled north and H the overall distance
travelled east, that is, V = N − S, H = E −W . Then

V +H = (N + E)− (S +W ) = 4n2

and the square of the total distance travelled is

V 2 +H2 = V 2 + (4n2 − V )2 = 2V 2 − 8n2V + 16n4 .

The graph of this expression, considered as a function of V , is a parabola opening
upwards; therefore there will be no maximum turning point, and the expression
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attains its maximum value for either the maximum or minimum value of V . The
minimum value of V is

V = N −S =
(
(2n+1)+ (2n+2)+ · · ·+3n

)
−
(
(n+1)+ (n+2)+ · · ·+2n

)
= n2 ,

so H = 3n2 and V 2 +H2 = 10n4; the maximum value of V gives the same result,
as you may check for yourself. Hence the maximum possible distance from home
is √

V 2 +H2 =
√
10n2 .

(b) If n = 1 it is easy to see by trial and error that it is impossible to end up at home.
If n = 2 we may travel along eight segments of distances

1, 2, 3, 4, 8, 7, 6, 5 ,

in that order; then the overall distance travelled east is 1− 3 + 8− 6 = 0, and the
overall distance north is likewise zero. If n = 3 the sequence

1, 2, 3, 4, 8, 6, 7, 5, 12, 10, 11, 9

achieves the same object. If we know how to get home after 4n segments then,
having done so, we may continue with segments of lengths

4n+ 1 , 4n+ 2 , 4n+ 3 , 4n+ 4 , 4n+ 8 , 4n+ 7 , 4n+ 6 , 4n+ 5 ,

which add no extra overall distance in either the vertical or horizontal directions
and therefore return us home after 4(n+2) segments. Hence, we may always end
up at home, provided n is greater than 1.

Q.964 The Fibonacci numbers are defined by

Fn+1 = Fn + Fn−1 wheren ≥ 1

subject to F0 = F1 = 1. Show that

Fn = nC0 +
n−1C1 +

n−2C2 + . . .+ n−kCk

where k = n
2

if n is even, (n− 1)/2 if n is odd.
Interpret this equation in Pascal’s triangle.

ANS. Let An be the number of ordered lists of 1s and 2s such that the sum of all the
numbers in the list is n. For example, A4 = 5 since

1111 , 112 , 121 , 211 and 22

are the only possible lists adding up to 4. We shall use two different arguments to show
that An is equal to the left hand side and the right hand side of the given equation; the
two sides must therefore be equal to each other.

Firstly, A0 = 1 since the “empty list” containing no numbers at all is the only list of
1s and 2s adding up to 0, and A1 = 1 since the list containing just a single 1 is the only
possibility adding up to 1. For n ≥ 1, a list of 1s and 2s adding up to n+1 must consist
of
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• a 1, followed by a list adding up to n; or

• a 2, followed by a list adding up to n− 1.

The number of possibilities is An in the first case, An−1 in the second, and so

An+1 = An + An−1 .

Since the numbers An satisfy the same recurrence relation and the same initial condi-
tions as the Fibonacci numbers, we have An = Fn for all n ≥ 0.

On the other hand, let us count the lists containing m twos and adding up to n.
If there are m twos there must be n − 2m ones and hence n − m numbers in the list
altogether; we can specify an ordered list by choosing which m places of the n − m
available are to be occupied by the 2s. This can be done in n−mCm ways. The number
of 2s in the list can be anywhere from a minimum of zero up to a maximum of n

2
if n is

even, n−1
2

if n is odd. Thus

An = nC0 +
n−1C1 +

n−2C2 + · · ·+ n−kCk ,

where k is as specified in the question. As explained above, this completes the proof.
This shows that in Pascal’s triangle the “oblique diagonals” such as 1, 5, 6, 1 (en-

closed in boxes below) add up to the Fibonacci numbers.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Q.965 A fraction is called a unit fraction if it has numerator 1.

(a) Show that every positive fraction can be written as a sum of distinct unit frac-
tions.

(b) Given any two positive integers a and b, show that there exists a positive integer
k such that ak can be written as a sum of distinct factors of bk.

ANS.

(a) First consider a positive fraction
a

b
< 1. Then

a

b
must lie between two unit frac-

tions, say
1

n
≤ a

b
<

1

n− 1
,
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where clearly n ≥ 2. So we can write

a

b
=

1

n
+
na− b
nb

, (∗)

writing
a

b
as a unit fraction plus a remainder. We can then repeat the procedure

with the remainder until we have found the original fraction as a sum of unit
fractions. Note that

a

b
<

1

n− 1
, so (n− 1)a < b , so na− b < a ;

thus in (∗) the numerator of the remainder is less than the numerator of the orig-
inal fraction. Since these numerators cannot decrease indefinitely, the procedure
must eventually terminate with a representation of

a

b
solely in terms of unit frac-

tions. Moreover,
na− b
nb

=
a

b
− 1

n
<

1

n− 1
− 1

n
=

1

n(n− 1)
≤ 1

n

since n ≥ 2. Hence when the remainder in (∗) is written as a sum of unit fractions,
all the denominators of these fractions must be greater than n, and this shows that
the unit fractions we eventually find adding up to

a

b
are all distinct.

If
a

b
> 1 then we can find an integer n such that

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
≤ a

b
<

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
+

1

n+ 1
.

We then have
a

b
=

(
1

1
+

1

2
+

1

3
+ · · ·+ 1

n

)
+
c

d
, (+)

where
c

d
<

1

n+ 1
< 1 ;

by the first part of the argument,
c

d
can be written as a sum of distinct unit frac-

tions with denominators greater than n + 1, and substituting this sum into (+)

gives the required sum for
a

b
.

(b) Find a sum of distinct unit fractions

a

b
=

1

n1

+
1

n2

+ · · ·+ 1

ns

as in (a), and let k be a common denominator for the fractions on the right hand
side. Then

ak =
bk

n1

+
bk

n2

+ · · ·+ bk

ns

is an expression of the required form.
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Carlos Alberto da Silva Victor of Rio de Janeiro, Brazil, sent solutions to problems 957,
958, 959, 960, 961 and a partial solution to 962.

* * * * * * * * * * * * * * *

NOT SO OBVIOUS (page 6)

2 9 7 8 6
+ 8 5 0
+ 8 5 0

3 1 4 8 6

STRIP PATTERN PUZZLE (page 11)

It’s a deep frieze!
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