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UNSW SCHOOL MATHEMATICS COMPETITION 1996

SOLUTIONS

JUNIOR DIVISION

1. If x is a real number, [x] denotes the largest integer less than or equal to x; for
example, [π] = 3. Find all positive real numbers x, y satisfying the equation

[x] [y] = x+ y .

Prove that there are no solutions besides those you have found. Solution . Let
a = [x] and b = [x] [y], and note that a and b are non-negative integers. From the
equation we have y = b− x.

Case 1. If x is an integer then so is y andwe have [x] = x, [y] = y. Hence xy = x+y
and we obtain

(x− 1)(y − 1) = xy − x− y + 1 = 1 .

Therefore x− 1 = y − 1 = 1 and we have a solution x = y = 2.

Case 2. If x is not an integer then [y] = [b− x] = b− ([x] + 1) = b− a− 1 and we
need to solve

a(b− a− 1) = b .

Clearly a is a factor of b and we may write b = ac, where c is an integer.
Therefore

a(ac− a− 1) = ac .

If a = 0 then b = 0 and hence y = −x, which is impossible. So a 6= 0.
Therefore ac− a− 1 = c and

(a− 1)(c− 1) = ac− a− c+ 1 = 2 ,

which gives a = 2, c = 3 or a = 3, c = 2. Therefore a = 2 or 3 and b = 6, and
hence 2 ≤ x < 4, y = 6− x. But we must remember that in this case x is not
an integer, so the solutions x = 2, 3 are to be rejected.

Putting all this back together, solutions of the given equation are (i) 2 < x < 3
and y = 6− x; (ii) 3 < x < 4 and y = 6− x; (iii) x = y = 2.
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2. Show that if n + 1 points are chosen at the centres of squares on an n × n chess-
board, there must be two pairs of points among those chosen which are the same
distance apart.

Solution . LetO be the point in the centre of the bottom left hand square. We shall
find all possible distances between pairs of points if we consider the distance
from O to the centres of each of the lowest two squares in the second column
from the left, the lowest three in the third column, and so on up to the n squares
in the right hand column. So the number of different distances between the given
points is at most

2 + 3 + · · ·+ n =
1

2
(n− 1)(n+ 2) =

1

2
(n2 + n− 2) .

(Comment . The number of different distances might actually be less than this,
since, for example, a distance of 5 units horizontally is the same as a distance of
4 units horizontally and 3 vertically.) On the other hand, the number of ways to
choose two points of the n+ 1 given points is 1

2
n(n+ 1). Since

1

2
n(n+ 1) =

1

2
(n2 + n) >

1

2
(n2 + n− 2)

there are too many pairs for each of them to have a different distance; so (at least)
two pairs of points must be the same distance apart.

3. Prove that for all real numbers x, y,

(x+ y)4 ≥ 7x3y + 7xy3 + 2x2y2 .

Solution . We have

LHS− RHS = (x4 + 4x3y + 6x2y2 + 4xy3 + y4)− (7x3y + 7xy3 + 2x2y2)

= x4 − 3x3y + 4x2y2 − 3xy3 + y4

= (x− y)(x3 − 2x2y + 2xy2 − y3)

= (x− y)2(x2 − xy + y2)

Clearly (x− y)2 ≥ 0; also

x2 − xy + y2 =

(

x−
1

2
y

)2

+
3

4
y2 ≥ 0 .

Therefore LHS−RHS ≥ 0 and we have (x+ y)4 ≥ 7x3y+7xy3 +2x2y2 for all x, y.

4. ABCD is a parallelogram; X is a point on the diagonal BD. A line through X
parallel to AB intersects AD at the point P ; a line through X parallel to BC
intersects AB at Q. Show that the area of the quadrilateral APCQ is half the area
of ABCD.

Solution . Consider the following diagram. The required area is the unshaded
part, which consists of a parallelogram APXQ and triangles XQC and XPC.
Now triangles
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XQC andXQB stand on the same base and lie between parallel lines, and there-
fore have the same area; likewise, XPC and XPD have the same area. Thus the
unshaded area is the sum of the areas ofXQB, APXQ andXPD, that is, the area
of△ABD. Clearly this is half the area of ABCD.

Alternative solution . If we can show that the shaded region in the above diagram
is half the area of ABCD, then the area of APCQ will be the other half and the
problem will be solved. Note, firstly, that since PR ‖ AB and QS ‖ AD, quadri-
laterals QBRX and PXSD are parallelograms; and, secondly, that any parallel-
ogram is divided by a diagonal into two triangles of equal area. Therefore we
have

area(BCD) = area(BAD)

area(DPX) = area(DSX)

area(BRX) = area(BQX)

Adding the first two of these equations and subtracting the third (refer to the
diagram!) gives

area(CRPD) = area(AQSD)

and so

area(CPD) =
1

2
area(CRPD) =

1

2
area(AQSD) .

Thus the total shaded area is 1
2
(area(AQSD) + area(QBCS)), that is, half the area

of ABCD.

5. The vertices of a regular seven-sided polygon are to be coloured red, blue, green
or yellow. If a vertex is coloured red or blue then the first vertex and the fourth
vertex after the red or blue vertex, counting in an anticlockwise direction, must
be neither blue nor green; if a vertex is yellow or green then the first and fourth
must be neither red nor yellow. Find all possible colourings of the seven vertices.

Solution . Number the vertices 1,2,3,4,5,6,7 around the polygon in an anticlock-
wise direction. We have two pieces of information:
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(a) if a vertex is red or blue then the first and fourth following vertices are nei-
ther blue nor green;

(b) if a vertex is yellow or green then the first and fourth following vertices are
neither red nor yellow.

Suppose that vertex 1 is red. Then (1) tells us that vertex 2 is red or yellow and
that vertex 5 is red or yellow. If vertex 5 is yellow then (2) says that the fourth
vertex around from 5 may not be red or yellow; but the fourth vertex from 5 is
vertex 2, which we know is red or yellow, so this is impossible. This argument
shows that if vertex 1 is red then so is vertex 5.

Applying the same argument to vertex 5 shows that if vertex 1 is red then so are
vertices 5,2,6,3,7 and 4. Clearly the same reasoning works if we start from any
vertex other than 1. Therefore we have shown that if any vertex is red, then all
vertices are red. A similar argument will show that if any vertex is green, then all
vertices are green.

Is there any possible colouring of the vertices without using red or green? If so,
the requirements of the problem become

(c) if a vertex is blue then the first and fourth following vertices are yellow;

(d) if a vertex is yellow then the first and fourth following vertices are blue.

But by an argument like the above (try it!) we may see that if vertex 1 is blue then
vertex 2 must be both blue and yellow, which is impossible. Thus vertex 1 in
fact is not blue, and similarly is not yellow. Therefore there are only two possible
colourings for the seven vertices: all red, or all green.

6. Find all positive integers n for which all of the numbers

n , 2n− 1 , 2n+ 5 , 3n− 2 , 5n− 4 , 6n− 5 , and 12n+ 5

are prime. (Note: 1 is not a prime.)

Solution . Consider the possible remainders when n is divided by 7.

• If there is no remainder then n is divisible by 7, and is therefore prime only
if n = 7.

• If the remainder is 1 we can write n = 7k + 1; then 2n + 5 = 14k + 7, which
is divisible by 7. Therefore 2n + 5 is prime only if 14k + 7 = 7, that is, k = 0
and n = 1.

• If the remainder is 2 we have n = 7k + 2 and so 6n − 5 = 42k + 7, which is
prime only for k = 0, that is, n = 2.

• If the remainder is 3 then n = 7k + 3 and 3n − 2 = 21k + 7, which is prime
only if k = 0, n = 3.

• If the remainder is 4 then n = 7k + 4, so 2n− 1 = 14k + 7, which once again
is prime only when k = 0 and so n = 4.

4



• If the remainder is 5 then n = 7k+5 andwe have 5n−4 = 35k+21 = 7(5k+3).
This number is divisible by 7, and the quotient 5k + 3 cannot possibly be 1,
so the number is not prime.

• If the remainder is 6 we have n = 7k + 6 and so 12n + 5 = 84k + 77 =
7(12k + 11), which, for the same reasons as in the previous case, is never
prime.

We see that in every one of the seven cases, at least one of the given expressions
fails to be prime, with possible exceptions when n = 1, 2, 3, 4 and 7. However
n = 1 and n = 4 must be ruled out as they are not prime, while n = 2 must also
be ruled out since then 2n+5 = 9which is not prime. If n = 3 the seven numbers
are

3 , 5 , 11 , 7 , 11 , 13 , 41

which are indeed all prime; while if n = 7 then

7 , 13 , 19 , 19 , 31 , 37 , 89

are likewise all prime. Therefore there are two possible values of n, namely 3 and
7.
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SENIOR DIVISION

1. In a circle, AB and CD are two chords, perpendicular to each other and intersect-
ing at P . The perpendicular from P toBC meetsBC atX . WhenXP is extended
it meets AD at Y . Show that Y is the midpoint of AD.

Solution . In the diagram at right, triangles
BXP and BPC are right-angled; therefore

∠XBP + ∠XPB = 90◦ = ∠PBC + ∠PCB

and so ∠XPB = ∠PCB. Moreover,

∠XPB = ∠Y PA

(vertically opposite angles), while

∠PCB = ∠DCB = ∠DAB = ∠YAP
since ∠DCB and ∠DAB stand on the same arc. Hence ∠YAP = ∠Y PA, which
shows that △YAP is isosceles and AY = PY . Similarly DY = PY ; therefore
AY = DY and Y is the midpoint of AD.

2. Show that if x, y and z are real numbers between 0 and 1 then

xy(1− z) + yz(1− x) + zx(1− y) ≤ 1 .

Solution . Consider a cube with side length 1 and choose pointsX, Y, Z as shown,
such thatOX = x,OY = y andOZ = z. The cube is divided into eight smaller re-
gions

by three planes, parallel to the faces of the cube and passing through the points
X, Y and Z. The front top left subregion in the diagram has volume xy(1 − z),
the front bottom right region has volume yz(1 − x) and the back bottom left,
zx(1− y). Since these three regions do not overlap, their total volume is less than
the volume of the cube; that is,

xy(1− z) + yz(1− x) + zx(1− y) ≤ 1 .
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Alternative solution . Since x, y, z are between 0 and 1, the numbers

x , y , z , 1− x , 1− y , 1− z

are all non-negative. Therefore

xy(1− z) + yz(1− x) + zx(1− y)

≤ [xyz + xy(1− z)] + [yz(1− x) + y(1− z)(1− x)]

+ [zx(1− y) + (1− z)x(1− y)]

+ [(1− x)(1− y)z + (1− x)(1− y)(1− z)]

= xy + y(1− x) + x(1− y) + (1− x)(1− y)

= xy + x(1− y) + (1− x)y + (1− x)(1− y)

= x+ (1− x)

= 1

Exercise . Explain why this is really just the same as the previous solution.

3. A row of marbles contains n red and n blue marbles. All the marbles are identical
except for colour. How many arrangements are there in which the red marbles
occur in exactly k separate blocks? (For example the row

BRRRRBBRBRRBBB

contains three blocks of red marbles.)

Solution . First, it is obvious that if n < k then the red marbles cannot be put into
k separate blocks, and so the number of arrangements is zero. From now on we
assume that n ≥ k. To ensure that there are k separate blocks of red marbles we
arrange k red marbles and k − 1 blue marbles in an alternating pattern:

RBRBR . . . RBRBR .

There remain n−k red and n−k+1 bluemarbles, andwe are left with the problem
of how to arrange these. The n − k reds have to be arranged into k groups; it is
permissible for some groups to be empty. Imagine the n− k marbles arranged in
a line, with k − 1 dots separating them into k groups. Any such arrangement is
determined by choosing which k − 1 of the n− 1 “locations” (n− k marbles and
k − 1 dots) are to hold the dots. The number of ways of choosing k − 1 locations
out of n − 1 is given by the binomial coefficient

(

n−1
k−1

)

. We must also arrange the
n− k+1 blue marbles into k+1 groups (the k− 1we have above, plus a possible
extra group at each end), and a similar argument shows that this can be done in
(

n+1
k

)

ways. Thus the total possible number of arrangements is

(

n− 1

k − 1

)(

n+ 1

k

)

.
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4. The vertices of a regular seven-sided polygon are to be coloured red, blue, green
or yellow. If a vertex is coloured red or blue then the first vertex and the fourth
vertex after the red or blue vertex, counting in an anticlockwise direction, must
be neither blue nor green; if a vertex is yellow or green then the first and fourth
must be neither red nor yellow. Find all possible colourings of the seven vertices.

Solution . See question 5 in the Junior division.

5. An unending list of positive integers is constructed as follows. The first member
of the list is chosen at random; each other number in the list is the sum of the
1996th powers of the digits of the preceding number. Prove that there is a number
which occurs at least twice in the list.

Solution . Suppose that the list contains a number n with d digits, and let n′ be
the next number in the list. Since the maximum possible value of n′ occurs when
all the digits of n are nines, we have

n′ ≤ 91996d and n ≥ 10d−1 .

We would like to show that n′ < n, that is,

91996d < 10d−1 ; (∗)

in fact, this is true for d ≥ 2001, as we shall prove by mathematical induction. If
d = 2001 then

91996d < 101996 × 10000 = 102000 = 10d−1

and so (∗) is true. If (∗) is true for some particular d ≥ 2001 then

91996(d+ 1) < 91996d+ 9× 102000 < 10d−1 + 9× 10d−1 = 10× 10d−1 = 10(d+1)−1

and we see that (∗) is also true for d+ 1. Hence (∗) is true for all d ≥ 2001.

This inequality shows that whenever our list contains a number having more
than 2000 digits, we can be sure that the next number in the list is smaller. If this
number still has more than 2000 digits, the next will be smaller again, and so on,
until we reach a number of just 2000, or fewer, digits. Therefore, however far
we calculate the list, we shall continue to find more and more numbers with 2000
digits or fewer. But there is only a finite quantity of such numbers, and so, sooner
or later, we must reach a number which has already occurred.

6. Prove that every power of 2 has a multiple whose decimal expansion has only
the digits 1 and 2. (For example 3× 22 = 12 and 14× 23 = 112.)

Solution . We shall use mathematical induction to prove a bit more than is re-
quired, namely: if k ≥ 1 then there existsm such that 2km is a number consisting
of k digits, each of which is either 1 or 2.

The result is clearly true for k = 1 as we may takem = 1.
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Suppose that the result is true for some particular value of k, so that n = 2km is a
k-digit number consisting only of ones and twos. If m is odd then (5k + m)/2 is
an integer and we have

2k+1 5
k +m

2
= 10k + 2km = 10 · · · 0 + n .

Since 10k ends in k zeros and n has k digits, the right hand side is a number
consisting of k + 1 ones and twos, as required. If, on the other hand, m is even,
then

2k+1
(

5k +
m

2

)

= 2× 10k + 2km = 20 · · · 0 + n ,

and again this is a k + 1-digit number containing only the digits 1 and 2. Thus, if
the statement above is true for some value of k then, regardless of whether m is
odd or even, the statement is also true for k + 1.

Hence, by induction, the result is proved.

Alternative solution . Consider the collection C of all n-digit numbers consisting
only of ones and twos: this collection contains exactly 2n numbers. Let two of the
numbers in C be

x = 10n−1an−1 + 10n−2an−2 + · · ·+ 10a1 + a0

y = 10n−1bn−1 + 10n−2bn−2 + · · ·+ 10b1 + b0,

where each of the digits a0, a1, . . . , an−1 and b0, b1, . . . , bn−1 is either 1 or 2. We
have

x− y = 10n−1(an−1 − bn−1) + +10n−2(an−2 − bn−2) + · · ·+ 10(a1 − b1) + (a0 − b0)

= 10n−1cn−1 + 10n−2cn−2 + · · ·+ 10c1 + c0,

where every coefficient ck is 0, 1 or −1. Now suppose that 2n is a factor of x − y.
Since 2n is not a factor of any of the numbers

±10n−1, ±10n−2, . . . , ±10, ±1

we must have
cn−1 = cn−2 = · · · = c1 = c0 = 0

and therefore x = y. This shows that all the 2n numbers in C have different
remainders when divided by 2n; but there are only 2n possible remainders, and
so there must be a number for which the remainder is zero. Such a number is a
multiple of 2n.

* * * * * * * * * * * *
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Update on Surfing the Internet
The address we gave in the last issue of Parabola for Fractals no longer exists. One

that does still exist, and has Fractals (among other things) is
http://miranda.bu.edu.cps-home.html1

If you have found any other interesting addresses, please let us know.

1Editoral note, February 2014: this is a dead link.
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