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SOLUTIONS TO PROBLEMS 966-974

Q.966 Prove that
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where the final sign on the left hand side is + if n is odd and − if n is even.

ANS. The equation will be proved for all n by mathematical induction. For n = 1 the
equation says
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which is certainly true. Now suppose that the equation is known to be true for some
specific n ≥ 1. We wish to prove that
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First note that if 1 ≤ k ≤ n we have
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Applying this formula to the previous equation gives
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Here the first term is
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Taking all but the first term to the left hand side gives
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which completes the proof.

ALTERNATIVE SOLUTION. (for readers who know some calculus). Edmond Park
(first year, Sydney University) writes:

At the outset, consider (1 − x)n. This is chosen based on our observation of the
binomial coefficients and alternating signs:
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where the final sign is + if n is even, − if n is odd. Now consider 1
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with the same signs as above. Now integrate both sides with respect to x, with limits 0
and 1:
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with the sign − if n is even and + if n is odd.

Q.967 ABCDE is a regular pentagon of side length 1, andX and Y are points on BC
and ED such that BX = p and EY = q. Find q in terms of p, given that the line XY
divides the pentagon into two regions of equal area.

ANS. Consider the following diagram. First we need to find the area of quadrilateral
XCDY,

where the sides XC, CD and DY and the angles C and D are known.
First method. In the diagram following, a, b, c, α and β are known.

The area of the quadrilateral is

∆ = 1

2
bc sinα +

1

2
ax sin(β − γ) =

1

2
[bc sinα + ax sin β cos γ − ax cos β sin γ],
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and we wish to eliminate the unknown quantities x and γ. By the sine rule in △PQR
we have

x sin y = b sinα (1)

while by two applications of the cosine rule,

x2 + c2 − b2 = 2cx cos γ

b2 + c2 − x2 = 2bc cosα.

Adding these last two equations and cancelling a factor of 2c gives

c = x cos γ + b cosα. (2)

(Exercise. Give an alternative proof of (2) by dropping a perpendicular from P to RQ
extended.) Substituting (1) and (2) into the area formula,

∆ =
1

2
[bc sinα + (a sin β) (c− b cosα)− ab cos β sinα]

=
1

2
[bc sinα + ac sin β − ab sin(α + β)] .

Second method. Extend PQ and SR to meet at O; let OR = x and OQ = y.

We have ∠OQR = 180◦ − α and ∠ORQ = 180◦ − β, so

∠O = 180◦ − (180◦ − α)− (180◦ − β) = α + β − 180◦.

Therefore the area of PQRS is

∆ = area (OPS)− area (OQR)

=
1

2
(a+ x)(b+ y) sin(α + β − 180◦)− 1

2
xy sin(α + β − 180◦).
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Using the relations

sin(α + β − 180◦)

c
=

sin(180◦ − α)

x
=

sin(180◦ − β)

y

found from the sine rule in△OQR, and remembering that

sin(α + β − 180◦) = − sin(α + β), sin(180◦ − α) = sinα, sin(180◦ − β) = sin β,

we may transform the area formula into

∆ =
1

2
[bc sinα + ac sin β − ab sin(α + β)]

as was found earlier.
To apply this to the pentagon problem we take a = 1 − q, b = 1 − p, c = 1 and

α = β = 108◦. This gives

area (XCDY ) =
1

2
[(2− p− q) sin 108◦ − (1− p)(1− q) sin 216◦]

=
1

2
[(2− p− q) sin 72◦ + (1− p)(1− q) sin 36◦] .

If p = 0 and q = 1

2
we have

area (XCDY ) =
1

2

[

3

2
sin 72◦ +

1

2
sin 36◦

]

and from the diagram it can be seen that this is half the area of the pentagon. Thus in
general the relation between p and q is

(2− p− q) sin 72◦ + (1− p)(1− q) sin 36◦ =
3

2
sin 72◦ +

1

2
sin 36◦.

Solving for q gives

q =
(sin 72◦ + sin 36◦)(1

2
− p)

sin 72◦ + (1− p) sin 36◦
. (3)

This can be simplified. Using the double angle formulae for sine and cosine,

sin 36◦ = 2 sin 18◦ cos 18◦

and
sin 72◦ = 2 cos 36◦ sin 36◦ = 4(1− 2 sin2 18◦) sin 18◦ cos 18◦,

so that a factor of cos 18◦ can be cancelled from numerator and denominator in (3). Also
using the fact (recently proved in Parabola) that

sin 18◦ =
−1 +

√
5

4
,
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we find after some algebraic work that

q =
(1 +

√
5)− 2(1 +

√
5)p

2(1 +
√
5)− 2(1−

√
5)p

.

Finally, multiplying top and bottom by
√
5−1 and dividing by 4, we obtain the simpler

result

q =
1− 2p

2 + (3−
√
5)p

.

Q.968 The set of numbers { 21, 24, 25, 29 } is given. It is permitted to multiply any two
numbers from the set (multiplying one number by itself is also allowed) and place in
the set the last two digits of the product. For example, since 21× 29 = 609, we may put
the number 09 into the set. By repeating this operation as often as desired, is it possible
to obtain a set including the number 99?

ANS. Notice that the four given numbers are the last two digits of squares, for exam-
ple

112 = 121, 182 = 324, 252 = 625, 272 = 729.

Take any two numbers with this property, say x and y, where 100u+x and 100v+ y are
squares. Then (100u+ x)(100v + y) is also a square. But

(100u+ x)(100v + y) = 100(100uv + uy + vx) + xy

and so the last two digits of xy also form the last two digits of a square. Thus the only
numbers which may ever occur in the set are those which are the last two digits of a
square. However 99 is not such a number. For if (10m+ n)2 ends in a 9 then nmust be
3 or 7; but

(10m+ 3)2 = 100m2 + 60m+ 9, (10m+ 7)2 = 100m2 + 140m+ 49

and in each case the second last digit is even. Thus the set can never contain 99.

Q.969 Five positive integers add up to 1996. Find all possible values of the greatest
common divisor of the five numbers.

ANS. The greatest common divisor of the five numbers will also be a factor of 1996
and therefore must be 1, 2, 4, 499, 998 or 1996. But if the greatest common divisor is 499
or more then each of the five numbers is divisible by 499 and so their sum is at least
5 × 499 > 1996. Hence the only possibilities for the greatest common divisor are 1, 2
and 4.

Q.970 Given a prime number p, find all integer solutions of the equation

√
x−√

p =
√
y .
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ANS. Square both sides,
x− 2

√
xp+ p = y,

rearrange,
2
√
xp = x+ p− y,

and square again,
4xp = (x+ p− y)2.

Since the right hand side is a square and 4 is also a square, xp must be a square. Since
p is prime we must have

x = pz2

for some integer z > 0, and hence

4p2z2 = (pz2 + p− y)2.

Taking the square root of both sides and solving for y leads to

y = pz2 + p± 2pz = p(z ± 1)2;

from the original equation it is clear that y < x, so the + sign must be rejected and we
have

x = pz2, y = p(z − 1)2

where z is a positive integer.

Q.971

(a) Let m be a positive integer and n a positive integer with fewer than m/9 digits.
Prove that if the sum of the digits of n and the sum of the digits of 2n are both
multiples of m, then every digit of n is less than 5.

(b) Show also that if m is not a multiple of 3 then the above is true for all integers n
having fewer than m digits.

ANS. Let
n = d0 + 10d1 + 102d2 + · · ·+ 10kdk,

where d0, d1, d2, . . . , dk are single digits. For each j write

2dj = 10ej + fj

where ej is the “carry” and fj the “remainder”. Then

ej =

{

1 if dj ≥ 5
0 if dj < 5.
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The sum of the digits of n is
d0 + d1 + · · ·+ dk,

while the sum of the digits of 2n is

(e0 + f0) + (e1 + f1) + · · ·+ (ek + fk) = (2d0 − 9e0) + (2d1 − 9e1) + · · ·+ (2dk − 9ek)

= 2(d0 + d1 + · · ·+ dk)− 9(e0 + e1 + · · ·+ ek).

If each of these is a multiple of m then so is

9(e0 + e1 + · · ·+ ek).

Now

(a) if k < m/9 then 9(e0 + e1 + · · · + ek) is a multiple of m and is less than m, and
therefore must be zero;

(b) if k < m and m is not a multiple of 3 then e0 + e1 + · · · + ek is a multiple of m less
thanm and again is zero.

Thus in both cases we have
e0 = e1 = · · · = ek = 0

and so every digit of n is less than 5.

Q.972

(a) Find all solutions in real numbers of the simultaneous equations

x2 + y2 = 13 , x3 + y3 = 35 .

(b) Show that for any given real numbers a and b, the equations

x2 + y2 = a , x3 + y3 = b

have at most two real solutions. (Interchanging x and y does not count as a new
solution.)

ANS. We solve (b) first. Let

x2 + y2 = a, x3 + y3 = b (1)

and write s = x+ y, p = xy. Then

s2 = a+ 2p

as = b+ ps.

Eliminating p from these equations leads to

s3 − 3as+ 2b = 0. (2)
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If s is a solution of this equation we have

p =
1

2
(s2 − a)

and the equation

x2 − sx+
1

2
(s2 − a) = 0 (3)

can be solved to find x, and hence y. There will be a real solution if and only if s2 − 4×
1

2
(s2 − a) ≥ 0, that is,

s2 ≤ 2a.

Now suppose that (2) has the three solutions s = s1, s2, s3. Then

s1 + s2 + s3 = 0

s1s2 + s2s3 + s3s1 = −3a

and so
s21 + s22 + s23 = (s1 + s2 + s3)

2 − 2(s1s2 + s2s3 + s3s1) = 6a.

Therefore we cannot have three different values of s2 all less than or equal to 2a. So we
have at most two different quadratics (3), leading to at most two solutions to (1).

To solve (a), let a = 13, b = 35. Then (2) is

s3 − 39s+ 70 = 0

which has solutions s = 2, 5 and −7. Therefore the quadratics (3) are

x2 − 2x− 9

2
= 0,

x2 − 5x+ 6 = 0,

x2 + 7x+ 18 = 0.

The first of these has solutions x = 1 ± 1

2

√
22; the second, x = 2, 3; the third, no real

solution. Since y = s− x we find that the given equations have solution

x = 2, y = 3 and x = 1 +
1

2

√
22, y = 1− 1

2

√
22.

Q.973 A triangle has n points located inside it, where n is a positive integer. These
n + 3 points (the three vertices of the triangle and the n interior points) are joined by
straight lines in such a way that the original triangle is subdivided into smaller regions,
every one of which is a triangle with vertices at three of the given n + 3 points. Prove
that it is possible to colour the lines red and blue so that for any two points P,Q of the
given n+ 3, there is a blue path from P to Q and also a red path from P to Q.
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ANS. The proof will be by mathematical induction. If n = 1 the diagram can be
coloured as in the left-hand diagram below, where a dotted line denotes blue and a
solid line red. Suppose that with n points inside, the triangle can be coloured as re-
quired, and consider the case of n + 1 points. There will be at least one point (for
example A in the right-hand diagram) which is the meeting point of three lines.
Delete these three lines and their common point. By assumption, the remaining dia-
gram can be coloured red and blue so that there is a red path and a blue path from
any point to any other. Now reinstate the three lines and colour one of them blue and
the other two red. Then the diagram with n + 1 interior points also has the required
property, and the result has been proved.

Q.974 For any integers x, y an integer x ∗ y is defined by

x ∗ y = min
(

|x+ y| , |x− y|
)

.

Calculate

(a) (· · · ((1 ∗ 2) ∗ 3) ∗ · · · ∗ 1995) ∗ 1996 ;

(b) 1 ∗ (2 ∗ · · · ∗ (1994 ∗ (1995 ∗ 1996)) · · · ) ;

(c) (−1996) ∗ ((−1995) ∗ · · · ∗ (0 ∗ (1 ∗ (2 ∗ · · · ∗ (1994 ∗ (1995 ∗ 1996)) · · · ))) · · · ) .

ANS.

(a) We have

1 ∗ 2 = 1

(1 ∗ 2) ∗ 3 = 2

((1 ∗ 2) ∗ 3) ∗ 4 = 2

(((1 ∗ 2) ∗ 3) ∗ 4) ∗ 5 = 3

and, calculating a few more terms if necessary, it soon becomes clear that

(· · · ((1 ∗ 2) ∗ 3) ∗ · · · ∗ (n− 1)) ∗ n =

{

n
2

if n is even
n+1

2
if n is odd.

The proof by induction is left as an exercise. Hence

(· · · ((1 ∗ 2) ∗ 3) ∗ · · · ∗ 1995) ∗ 1996 = 998.

10



(b) Here we have

1992 ∗ (1993 ∗ (1994 ∗ (1995 ∗ 1996))) = 1992 ∗ (1993 ∗ (1994 ∗ 1))
= 1992 ∗ (1993 ∗ 1993)
= 1992 ∗ 0
= 1992

and so

1 ∗ (2 ∗ · · · ∗ (1994 ∗ (1995 ∗ 1996)) · · · ) = 1 ∗ (2 ∗ · · · ∗ (1990 ∗ (1991 ∗ 1992)) · · · ).

Continuing in a similar manner we eventually reach

1 ∗ (2 ∗ · · · ∗ (1994 ∗ (1995 ∗ 1996)) · · · ) = 1 ∗ (2 ∗ (3 ∗ 4))
= 1 ∗ (2 ∗ 1)
= 1 ∗ 1
= 0.

(c) First note that from the result of (b) the given expression is

(−1996) ∗ ((−1995) ∗ · · · ∗ (0 ∗ 0)) = (−1996) ∗ ((−1995) ∗ · · · ∗ (−1 ∗ 0)).

Now for any x, y we have

−x ∗ y = min(| − x+ y|, | − x− y|)
= min(|y + x|, |y − x|)
= y ∗ x

and so
(−1996) ∗ ((−1995) ∗ ((−1994) ∗ · · · ∗ (−1 ∗ 0)))

= ((−1995) ∗ ((−1994) ∗ · · · ∗ (−1 ∗ 0))) ∗ 1996
= (((−1994) ∗ · · · ∗ (−1 ∗ 0)) ∗ 1995) ∗ 1996
= (· · · (0 ∗ 1) ∗ · · · ∗ 1995) ∗ 1996
= (· · · (1 ∗ 2) ∗ · · · ∗ 1995) ∗ 1996
= 998.

Q.968 was solved by Daniel Sathianathan, year 12, Epping Boys’ High School.

Q.966, 967, 969, 970 and 974 and partial solution to Q.972 were given by Carlos Al-
berto da Silva Victor, Rio de Janeiro, Brazil.
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Q.966, 970, 972 and partial solution to Q.967 were given by Edmond Park (first year,
Sydney University).
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