Parabola Volume 32, Issue 3 (1996)

DIVISION

Geoffrey Coombs!
1 Introduction

It was recently found that some versions of the Intel Pentium processor possessed a
flaw in the floating point divide unit. This generated considerable interest in the algo-
rithm used in this chip to perform the division of two real numbers. In this article I
intend to describe this algorithm and show that it is based on the simple long-division
algorithm that should be familiar to everyone. The novel aspects of the algorithm are
the techniques used to simplify the arithmetic operations involved in performing the
individual steps. The origin of the flaw will be described.
The operation of division is usually written in the form

P
7
where p, the number to be divided, is referred to as the dividend, d is the divisor and the
result of the operation, g, is the quotient.

For example, suppose we wish to divide the number 9.17 by 2.84. The standard
procedure for doing this by hand is usually referred to as long division. The calculation
is conventionally presented in the following tabular form:

q:

The most significant digit of the quotient is determined first. It is determined by a
process of trial and error as being the largest multiple of the divisor that does not ex-
ceed the dividend. In this case it is 3. To determine the next quotient digit we calculate
the partial remainder which is the difference between the dividend and the product of
the previous quotient digit and the divisor. So we have

9.17 -3 x 2.84 =9.17 — 8.52 = 0.65.

We then repeat the process used to determine the first quotient digit with the dividend
replaced by the shifted partial remainder, 10 x 0.65 = 6.5. The quotient digit is found to
be 2 and the new partial remainder is

6.5 —2 x 2.284 = 0.82.
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It is more convenient to record the shifted partial remainders in this tabular presenta-
tion of long division process. Thus the computations required to obtain five digits of
the quotient may be presented as follows:

3.2288
284 ) 917
8.52

oo
S Ot

.68
8.
5.68
25.2
22.72
24.8
22.72

20.8

In what follows we shall assume that both divisor and dividend are positive. For
zero divisor the operation is undefined and for zero dividend the result is trivially zero.
For negative divisor or dividend the sign of the quotient may be determined separately
and the quantities may be regarded as positive for the purposes of the actual division
process. Also we shall assume that the divisor and dividend lie in the range 1 < n < 10.
This is a minor restriction since any real number may be represented in normalised form.
That is the most significant digit of the number is placed immediately to the left of the
decimal point and a compensating power-of-ten factor is included. For example

126.56 = 1.2656 x 107,
0.000975 = 9.75 x 10~ 2.

The appropriate power of ten to include in the quotient may be obtained by simple
subtraction.

The part of a normalised number that contains the actual digits is referred to as the
significand.

2 The Algebraic Representation of the Division Process.

If the divisor and dividend satisfy the requirements specified above, the quotient may
be represented by

q=4q0-919293 - - -,

where the quotient digits ¢; satisfy 0 < ¢; < 10. Now the expression for the computa-

tion of the ;™ partial remainder, p;, is

pj+1 =10 X p; — g;d.
So the procedure for performing the division process may be expressed as:

e Given the partial remainder p,



— Form the shifted partial remainder 10 x p;,

— Determine the quotient digit g;.

— Calculate the product ¢;d,

— Perform the subtraction 10 x p; — ¢;d (= p;+1),

e Repeat these steps until the required number of quotient digits are obtained.

So that this schema is consistent with the example discussed above we must take
the initial partial remainder py as the dividend divided by 10, that is py = p/10.

Of the steps involved in this process, the shifting of the partial remainder is trivial
and the subtraction is straightforward. This leaves the formation of the product ¢;_,d
and the determination of the quotient digit ¢; as computationally difficult tasks. We
consider first the formation of the product.

3 The representation of numbers and simplified multi-
plication.

As we have seen the significand of a number, ¢ say, is represented in terms of its con-
stituent digits ¢; by

4= 40-919293 - - -,
where 0 < ¢; < 10for j > 0and 1 < gy < 10. The actual value of the number is

g=q+q@ x10 ' + g x1024+¢g x103+... |
:ZQjX10_j.
7=0

Suppose we extend the range of values of the allowed digits to include negative
values. That is we require that —10 < ¢; < 10. The presence of a negative digit in the
usual representation of a number is indicated by a bar, so the number 2.346 has the
value

2346 =2+ 3 x 107" + (—4) x 1072+ 6 x 107°.

This can always be converted into the usual form by the following manipulations:

2.346 =2+ 3 x 107" + (—=4) x 1072 + 6 x 107,
=24+3x107" +(6—10) x 1072+ 6 x 107°,
=24+3x107' —10x 1072 +6 x 1072+ 6 x 1072,
=2+(B-1)x107"+6x10724+6x 107?,
=242x107'4+6x107246x 1073,
= 2.266.



This illustrates a property of our extended representation: there is more than one rep-
resentation of each number. We can use this to bring about a simplification. It is clear
that we can dispense with the digits 6,7,8,9. As for any digit, ¢; say, greater than 5
may be replaced by 10 — ¢; which is less than or equal to five. For example

2.736 = 2.724 = 1.324.

or
5.892 = 5.712 = 4.312.

The advantage of this lies in the fact that we need only know how to multiply num-
bers up to 5 rather than up to 9. (Multiplication by 10 being trivial.) We may further
reduce the required knowledge of multiplication tables by representing the numbers
with respect to a smaller radix (or base).

For general radix r, the value of the number n having the representation

n = nNg.ninang - - - ,

the value is
x
n= E n; xr’,
j=0

where r is usually a positive integer and 0 < n; < rforj > 0and 1 < ny < r. Thisis a
generalisation of the radix 10 representation introduced above.

By choosing as our radix r = 4 we only need to know how to multiply 0,1 and 2.
The drawback is that we achieve a smaller improvement in precision for each iteration
of the method. However arithmetic involving numbers no larger than 2 lends itself to
digital machine computation and thus the radix-4 method is to be preferred.

We turn now to the problem of the determination of the quotient digits.

4 Derivation of an Important Inequality.

For general radix r the relation between the quotient and the quotient digits is

o0

q= g =Y .

k=0

Consideration of this relation and the expression for the partial remainder p; suggests

that we can write .

pj= Z r T gd.

k=j



This form certainly has the properties so far established for p;:

Po = Z r_k_Ide7
k=0
d e~
= - ZT ka)
-
k=0
_dp
Cord’
_b
r
And
pi=Y " g,
k=j
= r’ldqj + Z TﬁkJrjilqkd,
k=j+1
=7 tdg; +r! Z pkr g d,
k=j+1
o1 -1
=71 dg; + 17 pjya,
and so

Pj+1 = Tpj — de-

Although the closed form for the partial remainder obtained here is useless for com-
putational purposes, it does allow us to derive an extremely useful theoretical result.
Suppose the maximum value of the quotient digits is ¢,,,4,: thatis ¢; < gy, for all 7. We



can thus obtain an upper bound on the partial remainder,

oo

pi=Y_r g,

k=j

=0

qmal’d
r—1-

So
QTI’L(II d

r—1’
and similarly, if gy, is the minimum possible value of the quotient digits, then by a
similar argument it follows that

pj <

. >
piZ
or d d
Amin Qmaz
<p: < .
r—1 =Pi= r—1

For case of the number system with radix r = 4 and using a representation in which
negative digits are included and are drawn from the set 0, =1, £2, this inequality be-

comes 9 9
——d < p; < =d.
3¢ =Pi=3

Rearranging the standard relation to give

rp; = pj+1 + q;d,

and noting that the above inequality is also true for p;,,, we obtain the further inequal-

ity
2 2
gt )dsmp <5t )d
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Figure 1: The P-D plot.

5 Determination of the Quotient Digits.

We may regard this inequality as representing a region of the d-rp; plane for a fixed
value of the quotient digit ¢;. For example, for ¢; = 1 the inequality becomes

1 D

and the region is that part of the plane that lies between the straight lines rp; = 1d and
rp; = gd.

There will be a region of the d—rp, plane for each of the five possible values of the
quotient digit: 0, £1, £2. A portion of this plane is shown in the P-D plot of Figure 1.
Note that these regions overlap in part.

For the sake of simplicity the parts of this plot dealing with negative divisors and
negative quotient digits have been omitted. It should be obvious that the P-D plot is
symmetric about both axes.

To determine the quotient digit in the current iteration, the point in the P-D plane
that corresponds to the divisor and the current value of the shifted partial remainder
is located and the quotient digit for that region may be read off. Due to overlap of
these regions there may be a choice of digits but rather than being a complication, this
phenomenon may be exploited in the machine implementation of this process.

It would appear that to determine the appropriate region some form of calculation
is required. However we can reduce this to a table look-up by relaxing the precision
with which the divisor and the shifted partial remainder are specified.

First we note that the value of a positive divisor must be no less than one, as we
have assumed it is normalised, and less than two, as we are treating it as an effectively
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Figure 2: The P-D plot showing the discretization.

radix 2 quantity. We subdivide this interval into 16 boxes of equal width and label
them with the numbers 1 through 112. This corresponds to the radix 2 numbers 1.0000
through 1.1111. The vertical, or shifted partial remainder, axis is divided up into boxes
of width 1/8 or 0.001.

Thus the d—rp; plane is divided up into a set of rectangles, each of which, apart from
those rectangles that straddle two regions, has a unique value of the quotient digit
associated with it. For the rectangles that straddle regions a decision is made based on
some criterion as to which of the two possible values they belong. This discretization
of the P-D plot is shown if Figure 2.

Thus we have a table that may be consulted to determine the quotient digit on
the basis of the sampling of the first few bits of the dividend and the shifted partial
remainder.

6 Floating-Point Division in the Pentium Processor

It is just this algorithm for division that is used in the Intel Pentium microprocessor.
The look-up table is implemented directly on the chip. It was found that some versions
of the chip were flawed in that some divide operations yielded incorrect results. The
fault was traced to five incorrect entries in the look-up table.



The following may be of interest:’

Intel’s web site:
http://pentium.intel.com/procs/support/pentium/fdiv/index.htm

An article from Byte magazine:
http://byte.com/art/9503/secl3/artl.htm

A collection of documents relating to the discovery of the Pentium bug:
http://www.mathworks.com/README.html
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A CARD PREDICTION

You ask someone else to shuffle a pack of cards and then write down the name of a
card on a piece of paper which is placed aside.

Deal twelve cards face down, ask some-one to turn four of the cards over and place
the rest of the dealt cards on the bottom of the pack. We will suppose that the four
cards are a 3, 7, 10 and King. Ask some-one to assign a value to the King (which we
will suppose to be 5). Now deal out 10 — 3 = 7 cards alongside the 3, 10 — 7 = 3 cards
alongside the 7, no cards (10 — 10 = 0) alongside the 10 and 10 — 5 = 5 cards alongside
the King.

Now add the value of the cards chosen (in this example, 3 + 7+ 10 + 5 = 25) and
ask some-one to find the corresponding card (here the 25th) in the pack. It will be the
card which you wrote on the piece of paper.

Method in solutions section

?Editorial note, February 2014: these links are now dead
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