
Parabola Volume 32, Issue 3 (1996)

SOLUTIONS TO PROBLEMS 975-984

Q.975 For which real numbers x is it true that

[5x] = [3x] + 2[x] + 1 ?

Here [x] denotes the greatest integer less than or equal to x; for example, [π] = 3.

ANS. Let x = a + y, where a is an integer and 0 ≤ y < 1. Thus a = [x] and the
equation can be written

[5a+ 5y] = [3a+ 3y] + 2a+ 1.

Now [b+ z] = b+ [z] for any integer b, so we have

5a+ [5y] = 3a+ [3y] + 2a+ 1

and so
[5y] = [3y] + 1.

We can visualise the LHS and RHS by drawing a number line for 0 ≤ y ≤ 1.

LHS = 0 1 2 3 4

0
1/5 2/5 3/5 4/5

1/3 2/3
1

RHS = 1 2 3

The LHS and the RHS are equal if and only if

1

5
≤ y <

1

3
or

2

5
≤ y <

3

5
or

2

3
≤ y <

4

5
.

Q.976 It was shown in problem 6 of the Senior Division that every power of 2 has a
multiple whose decimal expansion contains only the digits 1 and 2. Find all pairs of
non-zero digits which can replace 1 and 2 so that the statement is still true.

ANS. Let a, b be two different non-zero digits. Since any multiple of any power of
2 (other than 1) ends in an even digit, the required result cannot be true if a and b are
both odd.

If one of the digits is odd and the other even then the result is true, and the proof
is very similar to that given in the competition solutions. Suppose that a is even and b
odd. For k = 1 we have

a = 2k
a

2
,

which is a one-digit multiple of 21 using only the digit a. If n = 2km is a k-digit multiple
of 2k with only the digits a and b then
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(i) ifm is odd then

2k+1 5kb+m

2
= 10kb+ n

is a (k + 1)-digit multiple of 2k+1 with only a and b for digits;

(ii) ifm is even then

2k+1 5ka+m

2
= 10ka+ n

has the same property.

So, by induction, the result is true for all k ≥ 1.
What happens if a, b are both even? Let 2k be a power of 2. Then, from above, 2k

has a multiple n consisting of digits 2 and 3 only; hence 2n is a multiple of 2k consisting
of digits 4 and 6 only. Thus the pair a, b = 4, 6 will work. Similar arguments cover all
pairs of even digits except a, b = 2, 6. Now a number containing twos and sixes only
must end in the digits 22, 26, 62 or 66 and therefore cannot be a multiple of 4, or of any
higher power of 2.

To sum up: the result is still true for any pair of digits which are not both odd,
except for 2 and 6.

Q.977 Evaluate

1× 22

2× 3
+

2× 23

3× 4
+

3× 24

4× 5
+

4× 25

5× 6
+ · · ·+ n 2n+1

(n+ 1)(n+ 2)
.

ANS. For any k we have

k

(k + 1)(k + 2)
=

2

k + 2
− 1

k + 1
;

hence

1×22

2×3
+ 2×23

3×4
+ 3×24

4×5
+ 4×25

5×6
+ · · ·+ n2n+1

(n+1)(n+2)

= 22
(

2

3
− 1

2

)

+ 23
(

2

4
− 1

3

)

+ 24
(

2

5
− 1

4

)

+ 25
(

2

6
− 1

5

)

+ · · ·+ 2n+1

(

2

n+ 2
− 1

n+ 1

)

= −22

2
+

23

3
− 23

3
+

24

4
+

25

5
− 25

5
+

26

6
+ · · · − 2n+1

n+ 1
+

2n+2

n+ 2

=
2n+2

n+ 2
− 2.

Q.978 Show that three adjacent numbers in a row of Pascal’s triangle can neither be in
geometric progression nor in harmonic progression. (Three or more positive numbers
are said to be in harmonic progression if their reciprocals are in arithmetic progression.)
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ANS. Three consecutive numbers in a row of Pascal’s triangle can be written

(

n

r − 1

)

,
(n

r

)

,

(

n

r + 1

)

for some n, rwith n ≥ 2 and 1 ≤ r ≤ n−1. These numbers are in geometric progression
if and only if

(n

r

)2

=

(

n

r − 1

)(

n

r + 1

)

,

that is,
(

n!

r!(n− r)!

)2

=
n!

(r − 1)!(n− r + 1)!

n!

(r + 1)!(n− r − 1)!
.

This simplifies to
(r + 1)(n− r + 1) = r(n− r)

or n+ 1 = 0, which is impossible.
The numbers are in harmonic progression if and only if

2
(

n
r

) =
1

(

n
r−1

) +
1

(

n
r+1

) .

This leads to

2
r!(n− r)!

n!
=

(r − 1)!(n− r + 1)!

n!
+

(r + 1)!(n− r − 1)!

n!

and to
2r(n− r) = (n− r + 1)(n− r) + (r + 1)r

and hence, after some rearrangement, to

(n− 2r)2 + n = 0

which is impossible as n > 0.

Q.979 Let n be a positive integer. Find the remainder when 23n − 7n is divided by 49.

ANS. Using the Binomial Theorem,

23n − 7n = (7 + 1)n − 7n

= 7n +
(n

1

)

7n−1 + · · ·+
(

n

n− 2

)

72 +

(

n

n− 1

)

7 + 1− 7n

= 72
(

7n−2 +
(n

1

)

7n−3 + · · ·+
(

n

n− 2

))

+ 1,

and when this is divided by 49 the remainder is clearly 1.
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Q.980 Charlie Chump, whose algebra is not very good, believes that (by cancelling
the sixes)

16

64
=

1/6

6/4
=

1

4

Find all fractions involving two-digit integers which Charlie would correctly simplify
(that is, which would be reduced to lowest terms by incorrectly cancelling a digit).

ANS. There are four cases to consider:

(a)
10n+ a

10n+ b
=

a

b
(b)

10a+ n

10b+ n
=

a

b
(c)

10n+ a

10b+ n
=

a

b
(d)

10a+ n

1− n+ b
=

a

b

where n, a, b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. We will only consider the cases where a < b.
(a) In the first, case,

10nb+ ab = 10na+ ab

a = b

and so the two numbers were the same.
(b) The second case is similar.
(c) In the third case,

10nb+ ab = 10ab+ na

10nb = 9ab+ na < 9ab+ nb (since a < b)

9nb < 9ab

n ≤ a− 1

so na = 10nb− 9ab

≤ 10(a− 1)b− 9ab

≤ b(a− 10) < 0

which is impossible.
(d) In the last case,

10ab+ nb = 10na+ ab

9ab = 10na− nb = (10a− b)n

If 9 divides 10a − b = 9a + a − b, then 9 divides a − b, which is impossible since
0 < a < b < 10. Thus 3 must divide n and so n = 3, 6 or 9.

If n = 3, then 3ab = 10a− b and so 10a = 3ab+ b = (3a+ 1)b. Thus either b or 3a+ 1
is divisible by 5, i.e. b = 5, a = −1 or a = 3, b = 3, neither of which is allowed.

If n = 6, then 20a = 3ab + 2b = (3a + 2)b. Thus either b or 3a + 2 is divisible by 5,
i.e. b = 5, a = 2 or a = 1, b = 4. If n = 9, then 10a = (a + 1)b and so either b or a + 1 is
divisible by 5, i.e. b = 5, a = 1 or a = 4, b = 8 or a = 0, b = 9.

So the possible answers are

26

65
=

2

5
,

16

64
=

1

4
,

19

95
=

1

5
and

49

98
=

4

8
.
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Q.981 Show that a square can be cut into n smaller squares (possibly of various sizes)
for any n > 5.

ANS. To get 2(n+ 1) squares (n ≥ 1), cut as follows:

n

n

· · ·

...

To get 2n + 5 = 2(n + 1) − 1 + 4 squares, simply cut the top left-hand square into
four.

Q.982 Semicircles are drawn internally on the hypotenuse of a right-angled triangle
and externally on the other two sides.

Find, without using algebra or calculus, the total area of the shaded crescents.

ANS. The area of a semicircle is proportional to the area of the square drawn on
its diameter. Hence, by Pythagoras’ Theorem, the (area of the) semicircle on the hy-
potenuse equals the sum of the (areas of the) semicircles on the other two sides. From
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the diagram, the shaded region consists of the two smaller semicircular regions, plus
the triangle itself, minus the semicircular region on the hypotenuse. Thus the total area
of the shaded crescents equals the area of the triangle, that is, half the product of the
two shorter sides.

Q.983 Show that there are integers a, b, c, not all zero, between −106 and 106, such
that

−10−11 < a+ b
√
2 + c

√
3 < 10−11.

ANS. Each of the 1018 real numbers r + s
√
2 + t

√
3,where r, s, t ∈ {0, 1, 2, · · · 106 − 1}

are between 0 and (1 +
√
2+

√
3)106. If we partition the interval {x : 0 ≤ x < (1 +

√
2+√

3)106} into 1018−1 equal subintervals, then two of the above numbers r1+s1
√
2+t1

√
3

and r2 + s2
√
2 + t2

√
3 must fall in the same subinterval. If a = r, −r2, b = s1 − s2 and

c = t1 − t2, then

|a+ b
√
2 + c

√
3| = |(r1 + s1

√
2 + t1

√
3)− (r2 + s2

√
2 + t2

√
3)|

<
(1 +

√
2 +

√
3)106

1018 − 1

<
1017

1018
= 10−11

Q.984 (Based on the article on page 12 of Vol. 32 No. 1). Let A,B be two sets of real
numbers, each having cardinal number ℵ0 and with no elements in common.

(a) Show that the cardinal number of the set

A ∪ B = {x : x ∈ A or x ∈ B}

is ℵ0.

(b) Show that the cardinal number of the set

R− A = {x : x is a real number and x 6∈ A}

is c.

(c) Show that the cardinal number of the set of all transcendental numbers is c.

ANS. (a) Let
1, 2, 3, · · · , n, · · ·
l l l l
a1, a2, a3, · · · , an, · · ·
b1, b2, b3, · · · , bn, · · ·

be (1 − 1) correspondences between the positive integers and the elements of the two
sets A and B.
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Then
1, 2, 3, 4, 5, 6, · · · , 2n− 1, 2n, · · ·
l l l l l l l l
a1, b1, a2, b2, a3, b3, · · · , an, bn, · · ·

is a (1− 1) correspondence between the elements of A ∪ B and the positive integers.

(b) and (c)

Since the set of algebraic numbers (B) has cardinal number ℵ0, and the set of all
real numbers (A) has cardinal number c, (c) is a particular case of (b) and we will only
prove (c). The proof can easily be modified to apply to the more general statement (b).

We have to show that it is possible to set up a (1 − 1) correspondence between the
set of transcendental numbers and the set of all real numbers.

Select from the transcendentals the set C (whose cardinal number is ℵ0) consist-
ing of the set {π, 2π, 3π, · · · nπ, · · · }. The union of this set with the set of algebraic
numbers B still has cardinal number ℵ0 (by (a)), i.e. it is possible to set up a (1 − 1)
correspondence between the sets C and B ∪ C. If such a (1 − 1) correspondence is set
up and extended by letting any transcendental number not in C correspond to itself,
we have a (1 − 1) correspondence between the transcendental numbers and the set of
all real numbers.

* * * * * * * * * *

A CARD PREDICTION

The final card is the one on the bottom of the pack after they were shuffled. See
if you can prove this (it only relies on the fact that there are 52 cards in a pack – so if
some-one else wishes to try the trick, remove a card while handing them the pack).

HIGH-SPEED CALCULATION

The answer is just 11 times the fourth-last number (in the example given, 11× 55 =
605). See if you can prove this.
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