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CURVE SKETCHING - WITH A DIFFERENCE

Rodney James

When you began to sketch curves early in high school, you evaluated the “y-value” for
several “x-values”, plotted the resulting points and then joined them up as smoothly
as you could. The second half of this process is actually very close to what a scientist
does with an experiment: given a set of readings y1, y2, · · · yn for an apparatus with
settings x1, x2, · · ·xn, find the function y = f(x) whose graph passes through the points
(x1, y1), (x2, y2), · · · , (xn, yn). For example suppose we know that the points (x, y) lie on
the graph of some polynomial where

x = −3 −2 −1 0 1 2 3

y = 24 16 10 6 4 4 6

How do we find the equation of this graph?
Questions like this can be answered using an idea introduced by Peter Brown in his

Finite Calculus article on page 7. Suppose the polynomial we are looking for is

f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 (1)

where we do not know the coefficients a0, a1, · · · an – or even the degree n. As Peter
Brown did, we will introduce the difference of a function ∆f(x) = f(x + 1) − f(x) and
the falling factorial polynomial:

x(r) = x(x− 1) · · · (x− r + 1)

where ∆x(r) = rx(r−1). The polynomial (1) can be re-written as

f(x) = bnx
(n) + bn−1x

(n−1) + · · · + b1x
(1) + b0. (1′)

Thus ∆f(x) = bn∆x(n) + bn−1∆x(n−1) + · · · + b2∆x(2) + b1∆x(1)

= nbnx
(n−1) + (n− 1)bn−1x

(n−2) + · · · + b2x
(1) + b1.

Now this difference can be applied again where, just as you learned to write the second

derivative as
d2y

dx2
, so we will write the second difference as

∆2f(x) = ∆(∆f(x)) = n(n− 1)bnx
(x−2) + (n− 1)(n− 2)bn−1x

(n−3) + · · · + 2b2.

1



Similarly, writing ∆3f(x) for ∆(∆(∆f(x))) etc, we have

∆3f(x) = n(n− 1)(n− 2)bnx
(n−3) + (n− 1)(n− 2)(n− 3)bn−1x

(n−4) + · · ·
∆nf(x) = n! × bn

∆n+1f(x) = 0.

This gives the rule:
The degree of the polynomial f(x) is the smallest number n where ∆n+1f(x) = 0.

If we apply ∆,∆2, · · · to our data, we get

x = −3 −2 −1 0 1 2 3
y = f(x) = 24 16 10 6 4 4 6

∆y = ∆f(x) = −8 −6 −4 −2 0 2
∆2y = ∆2f(x) = 2 2 2 2 2

So, since ∆3y is obviously 0, f(x) is a quadratic, and so

f(x) = b2x
(2) + b1x

(1) + b0

∆f(x) = 2b2x
(1) + b1

∆2f(x) = 2b2

From the table, we see that ∆2y = 2 and so, from this last equation, b2 = 1. Now if we
substitute x = 0 into the second last equation, we get

b1 = ∆f(0) = −2 (from the table)

similarly, b0 = f(0) = 6

so f(x) = x(x− 1) − 2x + 6

= x2 − 3x + 6

Example 2: Consider the data

x = −3 −2 −1 0 1 2 3
y = 60 10 4 6 4 10 60

∆y = −50 −6 2 −2 6 50
∆2y = 44 8 −4 8 44
∆3y = −36 −12 12 36
∆4y = 24 24 24

So the points (x, y) lie on a curve which represents a polynomial f(x) of degree 4 :

f(x) = b4x
(4) + b3x

(3) + b2x
(2) + b1x

(1) + b0

∆f(x) = 4b4x
(3) + 3b3x

(2) + 2b2x
(1) + b1

∆2f(x) = 12b4x
(2) + 6b3x

(1) + 2b2

∆3f(x) = 24b4x
(1) + 6b3

∆4f(x) = 24b4
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From the table,
24b4 = ∆4y(0) = 24 and so b4 = 1
6b3 = ∆3y(0) = 36 and so b3 = 6
2b2 = ∆2y(0) = 8 and so b2 = 4
b1 = ∆y(0) = −2
b0 = y(0) = 6

so y = x(4) + 6x(3) + 4x(2) − 2x + 6

= x(x− 1)(x− 2)(x− 3) + 6x(x− 1)(x− 2) + 4x(x− 1) − 2x + 6

= x4 − 3x2 + 6

Example 3: Consider the readings:

x = 0 1 2 3 4 5
y = 4 12 36 108 324 972

∆y = 8 24 72 216 648
∆2y = 16 48 144 432

This is not looking very hopeful! However notice that each of the difference lines is
just twice the line above, e.g. ∆y = 2y.

Now, looking at the table of differences in Peter Brown’s article, we see that, if
y = f(x) where f(x) = Aax, then

∆y = ∆(Aax) = A(a− 1)ax = (a− 1)y

which is the result we found (with a = 3). So

y = A× 3x

where
A = f(0) = 4.

Here are some for you to try:

1. x = −3 −2 −1 0 1 2 3
y = 0 0 0 6 24 60 120

2. x = −3 −2 −1 0 1 2 3
y = 408.429 20.0855 2.71828 1 1 2.71828 20.0855

[Hint: First find the values of ln(y).]

SAFETY FIRST

Replace the letters in the following by different non-zero digits to give a correct sum:
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M A K E
S A F E

P L A N S

Answers are in the solutions section
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