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Fractals: How long is a piece of string?

Bruce Henry and Clio Cresswell

“And though the holes were rather small,
they had to count them all.
Now they know how many holes it takes to fill the Albert Hall.
I’d love to turn you on.”
John Lennon and Paul McCartney 1967

You have probably all heard the expression “How long is a piece of string?”. It’s usu-
ally offered in rhetorical response to a question that has no sensible answer. On the
other hand if somebody was to give you a particular piece of string and then ask the
question “How long is this piece of string?”, you would find no problem in coming
up with a numerical answer. For a mathematician the rhetorical question “How long
is a piece of string?” is a legitimate question even in the absence of a particular piece
of string. To find the length L of a piece of string (or any curve for that matter) take a
known length l and count the number of times n that this length would need to be laid
end to end in order to pass from the beginning to the end of the curve. The length of the
curve is then L ≈ nl. We will refer to this method for measuring the length as the di-
vider’s method. If the curve is in the shape of a straight line then the divider’s method
will yield a result that differs from the exact result by a distance less than l. In general
the error in the length estimate obtained using the divider’s method will depend on
the shape of the curve; however in general if we repeat our measurement process for
different l becoming smaller and smaller we might expect this error to become smaller
and smaller. But what if we continue to apply the divider’s method down to where l
approaches zero? Surely n must now approach infinity and our length will be approx-
imated by the product 0×∞which is not defined since∞ is not a number. In order to
continue to apply the divider’s method all the way down to where l approaches zero
we need to employ mathematical limits. We use the notation

lim
l→0

to represent l approaching zero and
lim
n→∞

to represent n approaching infinity. We may now write the formula for the length of
the curve or the length of a piece of string as

L = lim
l→0

lim
n→∞

nl.

1



We could also write the length formula as

L = lim
l→0

n(l)l

where we note that n is a function of l.
The crucial assumption underlying the divider’s method is that curves appear in-

creasingly smoother (more like straight line segments) under magnification. As an
illustration consider the perimeter of a circle. Figure 1 shows such a perimeter with a
small piece magnified. When only a very small segment of the perimeter is visible to
us it looks like a straight line.

Figure 1

Figure 2 shows a circle whose perimeter is approximated by n = 12 straight line
segments each of length l. Each straight line segment subtends an angle θ. The true
length of the perimeter is simply L = ns where s is the arc length that subtends the
angle θ. Since the sum of the angles must add up to 2π we have n = 2π/θ and the arc
length is s = rθ so that the true length of the perimeter is L = 2πr. Now consider the
divider’s method. The geometry is shown in Figure 2 where s is the arc length between
points B and D and l is the straight line distance between these points.

Using simple trigonometry applied to triangle ABC we have

sin

(
θ

2

)
=

l

2r
.

This may be rearranged to give

l = 2r sin

(
θ

2

)
= the length of each straight line segment
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Figure 2

or

θ = 2 sin−1
(
l

2r

)
= the angle subtended by each straight line segment.

This implies that

L ≈ nl =
4πr

θ
sin

(
θ

2

)
with L expressed in terms of θ

or
L ≈ πl

sin−1
(
l
2r

) with L expressed in terms of l.

Clearly the approximation for L will be good provided that the straight line segment
l is a good approximation to the arc segment s. As we have seen in Figure 1 and
2 this approximation is very good when s is small relative to the radius. But when
s is small relative to the radius, l is small relative to the radius and θ is also small.
This allows us to use small angle approximations for the trigonometric function sin.
In particular if x is small then sin(x) ≈ x ≈ sin−1(x) (e.g., sin(.01) = .09983 . . . and
sin−1(.01) = .01001 . . .). Using the small angle approximation in the formula L = nl we
have

L ≈ 4πr

θ

θ

2
= 2πr

or
L ≈ πl

l
2r

= 2πr.

Now consider the employment of the divider’s method for measuring the length
of the coastline of mainland Australia. Our analysis for the circle suggests that the di-
vider’s method might yield a reasonable result provided that the length of our straight
line segment is less than the average ‘radius’ of Australia. Australia has an area of some
7, 617, 930 square kilometres1 which evaluates to an average radius of about 1557km

1Data from the CIA 1996 world factbook; net page:
http://www.odci.gov/cia/publications/nsolo/factbook/as.htm
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and so we might anticipate reasonable coastline measurements based on straight line
segments of a few hundred kilometres or less. Surveys of the coastline of Australia
reveal:

Length of line segment Number of segments Length of coastline
l n L ≈ nl

500 km 23.9 211,950 km
250 km 52.8 213,200 km
100 km 144.2 214,420 km
1 km 25,760 325,760 km

From the data in the table it is clear that nl does not converge to a constant value
as l decreases and so L ≈ nl does not provide a reliable approximation to the length of
the coastline. The most accurate estimate of the coastline of mainland Australia to date
is 35,877 kilometres4. In this estimate the coastline is defined as the Mean High Water
mark which is approximated by a series of straight line segments of unequal lengths
ranging between a minimum of 20 metres and a maximum of 8000 metres5. One re-
ported estimate of the length of the Australian Coastline based on high resolution satel-
lite imagery put it at 130, 000 kilometres which is roughly ten times the diameter of the
Earth. The reason for the discrepancies between the various measurements and the im-
possibility to pin it down precisely is that as we zoom in on the coastline of Australia
we encounter more and more detail with a roughness on all measurable scales. The
Australian coastline cannot be approximated by an n sided polygon. Estimates for the
length of the coastline increase as the size of the straight line approximating segments
is reduced. The final length of the coastline using the divider’s method will depend
on the limiting size of the ‘smallest’ straight line segment, if such a limiting size ex-
ists. The smallest length scale known at present is at the size of quarks (about 10−16

metres). Dividing the area of Australia by the area occupied by quarks we estimate
that Australia consists of about n = 1045 of them. Not all of these reside on Australia’s
perimeter but this gives an upper bound estimate of the coastline at about 1026 km. If
we travelled out into space in a direct line for this distance then we would be beyond
the furthest object ever observed in our universe.

We now consider an imaginary mathematical island called the Koch snowflake.
This island has detail on all scales, there is no limiting physical atomic scale. As we
shall see this island can be constructed using Turtle Graphics6 and string substitution
rules. Consider an imaginary turtle on your page that can draw images by following
simple instructions such as i) move forward a distance d and draw a line, ii) change
direction by turning through an angle θ to the right and iii) change direction by turning

2 L.F. Richardson “The Problem of Contiguity: An appendix to the statistics of deadly quarrels”,
General Systems, 6 (1961) 139.

3 Data from the CIA 1996 world factbook.
4Measurement by The Australian Surveying and Land Information Group (AUSLIG); net page

http://www.auslig.gov.au/facts.htm#dimensions.
5We are greatful to AUSLIG for providing us with this information
6Turtle Graphics was invented by Seymour Papert in the late nineteen sixties at the MIT Artificial

Intelligence Laboratories.
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through an angle θ to the left. To simplify our code we will label the first of these
instructions F , the second instruction +, and the third instruction −. Suppose we
specify the angle θ = 2π

6
. What image would be generated by the string F −−F −−F ?

The answer is an equilateral triangle. What image would be generated by the string
F + F −−F + F ? The answer is shown in Figure 3.

+

-

-

+F

F F

F

Figure 3

Now suppose we start with the character string for the equilateral triangle

F −− F −− F

and we replace each F in this string with the substitution string F+F- -F+F then we
obtain the new string

F+F- -F+F −− F+F- -F+F −− F+F- -F+F .

Ignoring the boxes, which were used simply to highlight the substitution process, can
you draw the image corresponding to this character string? We have really replaced
each straight line in the equilateral triangle by the image shown in Figure 3. The result
of this replacement is shown in Figure 4. Here we have also reduced the original length
scale d. Now in this new string replace each F again by the substitution string F +F −

Figure 4

−F+F . This now yields the new string F+F−−F+F+F+F−−F+F−−F+F−−F+
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F+F+F−−F+F−−F+F−−F+F+F+F−−F+F−−F+F−−F+F+F+F−−F+F−
−F+F−−F+F+F+F−−F+F−−F+F−−F+F+F+F−−F+F . The corresponding
image is shown in Figure 5 where we have reduced the length scale by a factor of three.
The true Koch snowflake is the image obtained from the resultant character string after

Figure 5

the substitution string has been applied an infinite number of times. Each time we
apply the substitution string we also reduce the length scale by a further factor of
three 7. Figure 6 shows the image obtained after five substitutions. What is the length

Figure 6

of the perimeter of the Koch snowflake? The perimeter is the number of F characters
multiplied by the corresponding length scale. In the Koch snowflake there are infinitely
many F characters but the length scale has been reduced by a factor three an infinite
number of times so again we have a result like L = 0 × ∞ and again we evaluate

7The starting string together with the substitution string and the scale factor is a convenient code
for the image. Codes like this, which were first employed by Aristid Lindenmayer to model biological
growth, are called L-systems.
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the expression for L by properly taking limits. Starting with the equilateral triangle,
the number of F characters after n substitutions is 3 × 4n. The length scale after n
substitutions is d/3n. Hence the perimeter after n substitutions is

L(n) = 3l
4n

3n
.

After an infinite number of substitutions, ie. as n→∞we have8

L = lim
n→∞

3l

(
4

3

)n
→∞.

On the other hand the area of the Koch snowflake is finite. We can evaluate the area as
follows. The area of the equilateral triangle of side d is d2

√
3/4. After one substitution

there are four equilateral triangles, one of side d and three of side d/3 giving an overall
area (d2

√
3/4)(1 + 3(1/32)). After n substitutions the overall area is

A(n) =

(
d2
√
3

4

)(
1 + 3

n∑
j=1

4j−1

32j

)

=

(
d2
√
3

4

)(
1 +

3

4

n∑
j=1

(
4

9

)j)

Evaluating the sum9 we have

A(n) =

(
d2
√
3

4

)(
1 +

3

4

(
1− (4

9
)n

1− 4
9

))
Hence after an infinite number of substitutions we have

A = lim
n→∞

A(n)

=

(
d2
√
3

4

)(
1 +

3

4

(
1

1− 4
9

))
= 47

√
3d2/80

8If n is a positive integer and a is a fixed positive constant less than one then

lim
n→∞

an → 0

lim
n→∞

1/an → ∞

9Here we use the geometric series
n∑

j=1

aj =
1− an

1− a
.
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Our investigations into the length of a curve have revealed that the length depends
fundamentally on the shape of the curve. If the shape can be approximated by a series
of straight line segments (even if vanishingly small) then the length is well defined.
This was found to be the case for the perimeter of a circle. A circle has a finite area
enclosed by a finite length perimeter. On the other hand the perimeter of the Koch
snowflake cannot be approximated by a polygon. The Koch snowflake has a finite
area enclosed by an infinite length perimeter. Australia has a finite area enclosed by a
perimeter whose length increases as the length scale of the measuring device decreases
until the limiting size of the measuring device is reached. Shapes with a finite area but
an infinite length perimeter or a perimeter whose length increases as the length scale of
the measuring device decreases cannot be described by standard geometry. In standard
Euclidean geometry a perimeter enclosing a finite two-dimensional region must have
a finite length. Indeed any one-dimensional line enclosing a finite two-dimensional
area must have a finite length. In Euclidean geometry we learn that points have zero
dimension, lines have dimension one, planes have dimension two etc. The coastline of
Australia and the Koch snowflake are lines but they cannot be one-dimensional. What
is the dimension of the coastline of Australia or the Koch snowflake if it is not one?

There are many different ways to measure the dimension of shapes. Here we will
consider the simplest of these measurements, the Kolmogorov Capacity. The idea is to
cover the shape of interest with small cells 10 of size ε and then to count the number of
cells M(ε) that contain some part of the shape. The dimension is then defined as11

D = lim
ε→0

log (M(ε))

log(1
ε
)

.

For shapes in nature we cannot really take the limit ε→ 0 and so we measureM(ε) for a
number of different but small values of ε and then we plot the points (log(1/ε), log(M(ε))).
If these points fit on a straight line y = mx where y = log(M(ε)) and x = log(1/ε) then
the slope of the line is

m =
log (M(ε))

log(1
ε
)

which is the same as our expression for the fractal dimension - provided that our ε
values are sufficiently small. Figure 7 shows isolated points covered by cells of size ε.
If there are n isolated points then we expect that for sufficiently small ε these points
should be in different cells and hence M(ε) = n. The dimension of the set of isolated

10These cells can be straight line segments, squares, circles, triangles, cubes etc.
11The logarithm function used in the expression for the dimension has the following properties:

log(1) = 0

log(xy) = log(x) + log(y)

log(x/y) = log(x)− log(y)

log(xn) = n log(x)
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Figure 7

points is then12

D ≈ lim
ε→0

log n

− log ε
→ 0.

Figure 8 shows a smooth line segment covered by cells of size ε. If the total length of

Figure 8

the line is L then we expect that the number of cells containing part of the line is the

12If x is a positive variable and a is a fixed positive constant then

lim
x→0

a/x → ∞

lim
x→0

ax → 0

lim
x→0

x/x → 1

lim
x→∞

a/x → 0

lim
x→∞

a/ log(x) → 0

lim
x→0

a/ log(x) → 0
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length of the line divided by the size of the cell, i.e., M(ε) = L/ε. The dimension of the
smooth line is thus

D ≈ lim
ε→0

log
(
L
ε

)
− log ε

= lim
ε→0

logL− log ε

− log ε
→ 1

Figure 9 shows an area bounded by a smooth perimeter covered by cells of size ε. If

Figure 9

the total area is A then we expect that the number of cells containing part of this area
is the total area divided by the area of a cell, i.e., M(ε) = A/ε2. The dimension of the
area is thus

D ≈ lim
ε→0

log
(
A
ε2

)
− log ε

= lim
ε→0

logA− 2 log ε

− log ε
→ 2

Thus isolated points have dimension zero, smooth lines have dimension one and re-
gions bounded by smooth lines have dimension two. Now consider the perimeter of
the Koch snowflake. Here we can take our cells to be straight line segments of length
ε. From above we have that for ε = d/3n the number of segments needed to cover the
perimeter is M(ε) = 3× 4n and hence

D = lim
ε→0

log (M(ε))

− log ε

= lim
n→∞

log(3× 4n)

− log(d/3n)

= lim
n→∞

log 3 + n log 4

n log 3− log d

=
log 4

log 3
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Hence the dimension of the perimeter of the Koch snowflake is about 1.26. The di-
mension greater than one but less than two tells us that the line is not smooth but has
wiggles on wiggles that give it a thickness but not enough thickness to have a finite
area. Shapes that have a non-integer number (or fractional number) of dimensions are
called fractals. Dimension measurements that allow for the possibility of non-integer
dimensions are called fractal dimensions. As an historical footnote, the word fractal was
introduced by Benoit Mandelbrot in 1975 who was the first to realize that many shapes
in nature exhibit a fractal structure. The construction of mathematical curves whose
length could not be measured (so called nonrectifiable curves) dates back to Peano
(1890)13 and Koch (1904). Dimension measurements that allow for the possibility of
non-integer dimensions date back to Minkowski (1901) and Hausdorrf (1919).

As an example of a fractal shape in nature we return to consider the coastline of
mainland Australia. Figure 10 shows a plot of the points (log(1/ε), log(M(ε))) for the
four sets of values given in the table above. Here ε is the length of the line segment
and M(ε) is the number of line segments needed to cover the coastline. The dimension

2

4

6

8

10

log(M)

-14 -12 -10 -8 -6
log(1/epsilon)

Figure 10

can be estimated from the slope of the straight line of best fit as shown in Figure 10.
This yields the dimension estimate 1.12 confirming that the coastline of Australia is a
fractal.

In conclusion we present a new formula for the length of a piece of string,

L ≈ lim
l→0

al−D+1,

where a is a finite constant, l is a known length and D is the fractal dimension. If
D = 1 then this reduces to L = a; however if D > 1 then L → ∞ and if D < 1 then
L→ 0. So next time somebody asks you the rhetorical question “How long is a piece of
string?” you might like to respond with the rejoinder “That depends, what is its fractal
dimension?”.

13Peano discovered a curve that twists around in such a complicated fashion that it passes through
every point inside a two-dimensional region.
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