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SOLUTIONS

JUNIOR DIVISION

1. Find the smallest positive integer n such that 1

3
n is a perfect cube, 1

5
n a perfect

fifth power and 1

7
n a perfect seventh power.

Solution. Write n as a product of prime numbers

n = 2a × 3b × 5c × 7d × 11e × · · · .

Then
1

3
n = 2a × 3b−1 × 5c × 7d × 11e × · · · ,

and for this to be a perfect cube all of the exponents a, b − 1, c, d, e, . . . must be
multiples of 3. In the same way we want a, b, c − 1, d, e, . . . to be multiples of 5
in order to make 1

5
n a perfect fifth power, and a, b, c, d − 1, e to be multiples of

7 so that 1

7
n will be a seventh power. First, a, e, f, . . . must be multiples of 3, 5

and 7; since we are looking for the smallest possible value of n we shall take
a = e = f = · · · = 0. Next, b is a multiple of 5 and of 7, so b is a multiple of 35 and
we can say b = 35t. But also b − 1 is a multiple of 3, that is, 35t − 1 is a multiple
of 3, and so 2t − 1 is a multiple of 3. Clearly the smallest possible value of t is 2,
and so b = 70. Similarly (check the details for yourself) we find that the smallest
possible values of c and d are 21 and 15 respectively. So the required integer is

n = 370 × 521 × 715 .

(As this is a 61-digit number we did not expect you to actually calculate it!)

2. On a small island there are six towns A,B,C,D,E and F . The transport system
consists of a number of two-way roads between pairs of towns. Roads do not
meet each other except at towns. Not all pairs of towns are directly connected;
for example, to travel from A toD it is necessary to pass through one of the other
towns. The shortest trip from A to C passes through three of the other towns; the
shortest trips from A to B, from C to D and from C to E each pass through two
other towns. No other trip requires more than one intermediate town. Make a
sketch showing which pairs of towns are connected directly by roads.

Solution. Since the shortest trip from A to C passes through three other towns
we may begin by drawing the following map.
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Now clearly, even if we draw more roads later, towns y and z can be reached
from C with fewer than two intermediate towns. So y and z cannot be D and E

(which require two intermediate towns coming from C) and therefore must be B
and F .

Which is which? If z were to be F , then since we can travel from A to F passing
through just one other town (or none at all), there would be a trip A−? − F − C

or A− F − C. But this is impossible as we must pass through at least three other
towns in travelling fromA to C. So z isB and y is F . SinceA andD are not joined
directly, this also means that x must be E.

Now there can be no more roads joining A,E, F,B and C, for any such road
would give a shorter trip from A to C. The only way to placeD so that travelling
from A to D requires one intermediate town is to join it to E; and then, in order
to get from C to D via two intermediate towns, a road is needed from D to F . So
the complete map of the island is as follows.

3. Given two primes p and q, how many pairs (x, y) of integers are there for which

p

x
+

q

y
= 1 ?

Solution. Multiplying both sides by xy and rearranging gives

xy − xq − yp = 0

and hence
(x− p)(y − q) = xy − xq − yp+ pq = pq . (∗)

Since p and q are prime, pq has only four factorisations as a product of two posi-
tive integers, and another four into negative integers. So there are eight possible
pairs (x, y) satisfying equation (∗). However one of these pairs has x = 0, y = 0
which is obviously impossible in the original problem. So there are seven pairs
(x, y) for which the given equation is true.

2



4. Let△ABC be right-angled. Let A′ be the mirror image of the vertex A in the side
BC, let B′ be the mirror image of B in AC and C ′ the mirror image of C in AB.
Find the ratio

area
(

△ABC
)/

area
(

△A′B′C ′
)

.

Solution. Consider the diagram on the
right. Clearly △ABC and △A′B′C ′ are
congruent, and soB′C ′ is parallel toBC.
Also △ACM and △AC ′N are congru-
ent; hence AN is perpendicular to B′C ′

and is equal in length to AM . Therefore
A′MAN is a straight line, is an altitude
of△A′B′C ′, and is three times as long as
AM .

This shows that△ABC and△A′B′C ′ stand on equal bases BC and B′C ′, and the
former has altitude one third of the latter; so the ratio of areas is

area
(

△ABC
)

area
(

△A′B′C ′

) =
1

3
.

5. The students in a school are arranged in a circle and numbered 1, 2, 3, . . . . Starting
with number 2, every second student is sent away to clean up part of the school-
yard, until only one student is left, and is allowed to go home early. (So, if there
were eleven students, they would be chosen in the order 2, 4, 6, 8, 10, 1, 5, 9, 3, 11
and the student to go home early would be number 7.)

(a)If there are 1997 students in the school, which one gets to go home early?

(b)How many students may there be in the school if number 1997 is to be the
one who goes home early?

Solution. If there are n students altogether, let h(n) be the one who goes home
early. (So the example above shows that h(11) = 7.) Suppose that n is even, n =
2m. Then on the first turn around the circle, the students numbered 2, 4, 6, . . . , 2m
are sent off to clean up the yard. The remainingm students are in exactly the same
position as they would have been if we had started with m students, except that
the first student is number 1, the second is number 3, the third number 5, . . . the
kth number 2k − 1. Now the student who goes home is the one in position h(m)
among these m students, that is, number 2h(m) − 1 in the original 2m students.
Hence

h(2m) = 2h(m)− 1 .

(For example, from above we can immediately say that out of 22 students, num-
ber 13 would go home early.) On the other hand, suppose that n is odd, n =
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2m + 1. Then the first m + 1 students to be sent on clean-up duty are numbers
2, 4, 6, . . . , 2m and 1; this leaves m students in a similar position to those above,
except that the first is number 3, the second number 5, . . . and the kth number
2k + 1. So the student dismissed early is the one in position h(m) from this list,
that is, number 2h(m) + 1. Therefore

h(2m+ 1) = 2h(m) + 1 .

(For example, h(23) = 15.) We can now find a formula for h(n). Let k be chosen
such that 2k ≤ n < 2k+1. Then

h(n) = 2(n− 2k) + 1 . (∗)

To see that this is true for all values of n, assume that it is true for some particular
m. Then it is also true for 2m and 2m+ 1, because

2k ≤ 2m < 2k+1 ⇒ 2k−1 ≤ m < 2k

⇒ h(m) = 2(m− 2k−1) + 1

⇒ h(2m) = 2h(m)− 1 = 2(2m− 2k) + 1

and

2k ≤ 2m+ 1 < 2k+1 ⇒ 2k−1 ≤ m < 2k

⇒ h(m) = 2(m− 2k−1) + 1

⇒ h(2m+ 1) = 2h(m) + 1 = 2(2m+ 1− 2k) + 1 .

But (∗) certainly gives the correct answer for one student, so what we have just
proved shows that it also gives the correct answer for 2 or 3 students, therefore
also for 4, 5, 6 or 7 students, and so on. Now we can easily answer the question.

(a)We have 1024 ≤ 1997 < 2048 and so h(1997) = 2(1997 − 1024) + 1 = 1947.
That is, the 1947th student goes home early.

(b)Let the number of students be n, where 2k ≤ n < 2k+1. Then since h(n) = 1997
we have 2(n− 2k) + 1 = 1997 and so

n = 998 + 2k .

However n − 2k < 2k+1 − 2k = 2k, so 2k > 998 and k ≥ 10. So the possible
numbers of students in the school are

n = 998 + 210 , 998 + 211 , 998 + 212 , . . . = 2022 , 3046 , 5094 , . . . .

6. How many lists of n numbers are there for which both of the following state-
ments are true? –

• the list may contain only the integers 1, 2, 3, . . . , k; however, some numbers
may be used more than once, and some not at all;
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• no collection of two or more consecutive numbers fom the list adds up to a
multiple of k + 1.

Solution. Let s0 = 0, let s1 be the first number in the list, s2 the sum of the first
two, s3 the sum of the first three, and so on: sn is the sum of all the numbers in
the list. Note that if we know the numbers in the list we can calculate the sums
s0, s1, s2, . . . , sn, and if we know these sumswe can find the numbers in the list. In
fact, since each number in the list can only be 1, 2, 3, . . . or k, all we need to know
is the remainder when the sums are divided by k + 1. No two of these remain-
ders may be the same, for then by subtraction we should obtain a collection of
consecutive numbers from the original list whose sum has remainder zero when
divided by k + 1. Therefore in order to count the number of lists it is enough
to count the number of possibilities for s1, s2, . . . , sn, where each is 1, 2, 3, . . . or k
and no two are the same. Clearly this is impossible if n > k; if n ≤ k then there
are k possible choices for s1, then k − 1 for s2, and so on, ending with k + 1 − n

choices for sn. So the number of lists for which both the given statements are true
is zero if n > k, and

k(k − 1)(k − 2) · · · (k + 1− n)

if n ≤ k.

SENIOR DIVISION

1. ABCDEF is a hexagon inscribed in a circle, with the property that the lines AD,
BE and CF meet at a single point. Prove that

AB × CD × EF = BC ×DE × FA .

Solution. Let X be the point of intersection of the three lines. Triangles ABX

and EDX are similar because ∠AXB = ∠EXD (vertically opposite angles) and
∠ABX = ∠EDX (angles standing on the same arc). Therefore

AB

BX
=

DE

DX
;
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similarly
CD

DX
=

FA

FX
and

EF

FX
=

BC

BX
.

Multiplying these three equations,

AB

BX
× CD

DX
× EF

FX
=

DE

DX
× FA

FX
× BC

BX

and so
AB × CD × EF = BC ×DE × FA .

2. (a) Solve the simultaneous equations

a+ b+ c = 2 , bc+ ac+ ab = −5 , abc = −6 .

(b) Find all real solutions of the simultaneous equations

a+ b+ c = −1 , a2 + b2 + c2 = 15 , a3 + b3 + c3 = −13 .

Solution.

(a) The numbers a, b and c are solutions of (x−a)(x−b)(x−c) = 0. By expanding
the left hand side we have x3 − (a+ b+ c)x2 + (bc+ ac+ ab)x− abc = 0, and
the given relations yield the equation

x3 − 2x2 − 5x+ 6 = 0 .

This cubic is easily solved to give x = 1,−2, 3. Therefore a, b and c are 1,−2
and 3, in any order.

(b) We have
(a+ b+ c)2 = (a2 + b2 + c2) + 2(bc+ ac+ ab) ,

that is, 1 = 15 + 2(bc+ ac+ ab), and so bc+ ac+ ab = −7. Also,

(a+ b+ c)(a2 + b2 + c2) = (a3 + b3 + c3) + (a2b+ a2c+ b2a+ b2c+ c2a+ c2b)

= (a3 + b3 + c3) + (a+ b+ c)(bc+ ac+ ab)− 3abc ,

so −15 = −13 + 7 − 3abc and we find abc = 3. Now the method of part (a)
leads to the cubic x3 + x2 − 7x− 3 = 0. The cubic has a solution x = −3, and
therefore

(x+ 3)(x2 − 2x− 1) = 0 .

Solving the quadratic by completing the square (or by the quadratic for-
mula) provides two more solutions x = 1 ±

√
2 . Therefore a, b and c are

−3, 1 +
√
2 and 1−

√
2, in any order.
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3. The students in a school are arranged in a circle and numbered 1, 2, 3, . . . . Starting
with number 2, every second student is sent away to clean up part of the school-
yard, until only one student is left, and is allowed to go home early. (So, if there
were eleven students, they would be chosen in the order 2, 4, 6, 8, 10, 1, 5, 9, 3, 11
and the student to go home early would be number 7.)

(a) If there are 1997 students in the school, which one gets to go home early?

(b) How many students may there be in the school if number 1997 is to be the
one who goes home early?

Solution. See question 5 in the Junior Division.

4. In this problem [x] denotes the greatest integer less than or equal to x; for exam-
ple, [π] = 3. Let n be a positive integer. Find the smallest positive integer m such
that

[ n2

n+m

]

=
[ n2

n+m+ 1

]

.

Solution. The smallest m satisfying the given equation is the nearest integer to√
n . We shall prove this in two steps, firstly showing that if m takes this value

then the equation is true, and secondly that ifm takes any smaller value then the
equation is not true. Before we begin let’s just note that the square root of an
integer can never be an integer plus a half, so the difficulty of whether to round
halves up or down to get the “nearest” integer does not arise in this problem.

So, letm be the nearest integer to
√
n ; then

√
n− 1

2
< m <

√
n+ 1

2
. Now

n2

n+m
=

(n2 −m2) +m2

n+m
= n−m+

m2

n+m
. (∗)

Also,

m2 − (n+m) = m(m− 1)− n <
(√

n+ 1

2

)(√
n− 1

2

)

− n = −1

4
< 0 ,

and hence m2 < n + m. Therefore the right hand side of (∗) is an integer n − m

plus a fraction greater than 0 and less than 1; so

[ n2

n+m

]

= n−m .

On the other hand,

n2

n+m+ 1
=

(n−m)(n+m+ 1) +m2 +m− n

n+m+ 1
= n−m+

m2 +m− n

n+m+ 1
. (∗∗)

Here we have

(m2+m−n)− (n+m+1) = m2−2n−1 <
(√

n+ 1

2

)2−2n−1 = −3

4
+
√
n−n < 0 .
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Also
m2 +m− n = m(m+ 1)− n >

(√
n− 1

2

)(√
n+ 1

2

)

− n = −1

4
,

and since m2 +m − n is an integer it must be zero or positive. Putting these last
two inequalities together we have

0 ≤ m2 +m− n < n+m+ 1 ,

and so (∗∗) again is an integer plus a fraction less than 1. Hence

[ n2

n+m+ 1

]

= n−m =
[ n2

n+m

]

,

and we have proved that the equation is true whenm is the closest integer to
√
n.

Now suppose that m has some smaller value; thus m <
√
n − 1

2
. As above we

have
[ n2

n+m

]

= n−m .

If we reconsider (∗∗) we find that in this case

m2 +m− n = m(m+ 1)− n <
(√

n− 1

2

)(√
n+ 1

2

)

− n = −1

4
< 0 .

Therefore the right hand side of (∗∗) is now an integer minus something; by
rounding each side downwards we have

[ n2

n+m+ 1

]

< n−m ,

and the required equality is no longer true.

5. What is the least number of squares required in order that their edges cover all
the edges of an n× n square grid?

Solution. The accompanying diagram shows the grid for n = 7. Consider the
edges indicated with solid lines. There are 4n − 4 of them, and a little thought
shows that any square can cover only two of the edges; therefore at least 2n − 2
squares are required.

Nowwemust show that 2n−2 squares are enough. First we assume that n is odd.
The left-hand diagram below shows 1

2
(n− 1) squares, and these squares cover all

horizontal edges in the top left quarter of the grid, and all vertical edges in the
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bottom right corner. By constructing similar patterns of squares in all four corners
we obtain a total of 2n− 2 squares covering all the internal edges of the grid; and
it is clear from the diagram that the outside border of the grid is also covered by
these squares. If, on the other hand, n is even, a similar placement of 1

2
(n − 2)

squares in each corner covers all edges of the grid except the central lines AC

and BD. It is then easy to see from the diagram that the job is completed by two
further squares: one with opposite vertices at A and B, the other with opposite
vertices at C andD. The total number of squares used is thus 2(n−2)+2 = 2n−2.

Note . These results are incorrect for n = 1 and n = 2. The question ought to have
specified that n ≥ 3. In fact it is easy to see that one square is required for n = 1
and three for n = 2.

6. Let A be a point outside a circle C. For any point P on C, let Q be the vertex
opposite A on the square APQR. Determine the path traced out byQ as P moves
around the circle C.

Solution. LetO be the centre of C; constructB such that the linesOA andOB are
perpendicular, and the distance OB is equal to the distance OA. Then Q traces
out a circle with centre B and radius

√
2 times the radius of C.

Proof. Given O,P and Q, construct P ′ such that OPQP ′ is a parallelogram. Then
we have OA = OB (construction); also AP = PQ (given) and PQ = OP ′ (con-
struction), so AP = OP ′. Now since the angles of a triangle add up to 180◦, and
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so do two adjacent angles of a parallelogram, we have

∠OAP + ∠APQ+ ∠QPO + ∠POA = ∠BOP ′ + ∠BOA+ ∠POA+ ∠QPO .

Since ∠APQ = ∠BOA = 90◦ this proves that ∠OAP = ∠BOP ′, and so △OAP is
congruent to△BOP ′ (two sides and included angle).

Hence BP ′ = OP . But by construction OP = P ′Q, and so BP ′ = P ′Q. Fur-
thermore, ∠BP ′O = ∠OPA, and since ∠QP ′O = ∠OPQ (opposite angles of a
parallelogram are equal) we find that ∠BP ′Q = ∠QPA. Thus △BP ′Q is a right-
angled isosceles triangle and we have

BQ =
√
2P ′Q =

√
2OP

as claimed above. Note . If you labelled the square with vertices A,P,Q,R in
clockwise order then you would have found B to be above the circle, instead of
below as in the diagram. The rest of the solution would have been the same.
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