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THE MAGIC OF MOSCHOPOULOS

Peter G. Brown.

A Magic Square of order n is an arrangment of the numbers 1, 2, ..., n2 into a square
array in which we get the same sum whenever we add the numbers in any row, column
or diagonal.

Perhaps the most famous magic square is the one which appeared in the top right
hand corner of the painting Melancholia by Albrecht Dürer in 1514.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Not only is the sum of any row, column or diagonal equal to 34, but observe that
the sum of the four corner numbers is also 34, and that the sum of the squares of the
numbers in the top two rows equals the sum of the squares of the numbers in the
bottom two rows. (There are several other such nice properties which I leave you to
find.)

In a general magic square of order n, the magic sum S to which the numbers in any
row, column or diagonal add, can be found by noting that the sum of the entries of all
the numbers in the square is equal to n times the sum of each row which is S. We can
then use the well-known formula for 1 + 2 + ...+ k = 1

2
k(k + 1) to obtain

nS = 1 + 2 + 3 + ...+ n2 =
1

2
n2(n2 + 1)

and so
S =

1

2
n(n2 + 1).

The Chinese are generally credited with the invention of Magic Squares, and in fact the
earliest known magic square is called the Lo Shu which is a pictorial representation of
the magic square below

4 9 2
3 5 7
8 1 6

and makes its first appearance in the first century A.D. It is undoubtedly much older
but there is no direct evidence as to how far back it goes, and claims of 2000 B.C. are
probably far too extreme.
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The idea of the magic square was transmitted to the Arabs from the Chinese in
the eighth century and is discussed by Tabit ibn Korra (known for his formula for
amicable numbers) in the early ninth. Lists of magic squares of all orders from 3 to
9 are displayed in the Encyclopaedia, (the Rasā‘il), compiled about 990 by a group of
Arabic scholars known as the ‘brethren of purity’ (the Ikhwān al- s.afa). Despite all this,
no general constructive methods appeared until slightly later. In 1225, Ah. med al-Būnī
showed how to construct magic squares using a simple bordering technique, but he
may not have discovered the method himself.

Magic Squares were eventually introduced to the Western world in about 1315 by
a Byzantine scholar named Manuel Moschopoulos. It is very unlikely that he worked
out any of the methods for finding Magic Squares himself and there is some evidence
that the methods explained by Moschopoulos may have been of Persian origin. (The
work on Magic Squares by Moschopoulos has never been published in English1 but
there is an old French translation from last century.)

Moschopoulos was probably born about 1265, and was the nephew of Nicephoros
Moschopoulos, who became bishop of Crete during the reign of the Emperor An-
dronikos II. In 1305 or 1306 he was involved in some kind of political plot resulting
in his incarceration and disgrace, but we don’t know much about the details. In his
writings he gives a number of techniques for constructing magic squares of various
types. I want to show you only one of the recipes he gives and attempt to explain
where the idea came from which generates the recipe.

The Lo Shu magic square was created according to the scheme shown in Figure 0.
The numbers from 1 to 9 are written in order in a diagonal fashion and a central square
is removed, giving the basis of the magic square. The remaining numbers are then
reflected from top to bottom and side to side to complete the square.

1
4 2

7 5 3
8 6

9

−→

1
4 2

7 5 3
8 6

9

−→
4 9 2
3 5 7
8 1 6

Fig. 0
The idea of this construction generalises to produce magic squares with an odd

number of sides. (Note that there are other Magic Squares with an odd number of
sides which do not arise from this method.) I will illustrate for the magic square of
side 5.
Draw up the 9 sided square grid as shown, (Fig 1a.) and place the numbers 1 to 25
in standard order as shown. From this we extract the central square with entries and
spacings as shown (Fig. 1b.)

1The present writer has recently submitted a translation from the Greek for publication to a Journal
dealing with the History of Mathematics.
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1
6 2

11 7 3
16 12 8 4

21 17 13 9 5
22 18 14 10

23 19 15
24 20

25

Fig. 1a.

11 7 3
12 8

17 13 9
18 14

23 19 15

11 24 7 20 3
4 12 25 8 16

17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

Fig. 1b. Fig. 1c.
The remaining numbers are transposed from the top to the bottom and side to side to
obtain the final square. (Fig. 1c.)

Now this is NOT the recipe given by Moschopoulos, but I believe that is was the under-
lying method which led Moschopoulos, or rather those from whom he got the recipe,
to devise the recipe in the first place. This is typical of what can happen in mathematics
when someone finds a simple recipe or method for doing something. The original rea-
soning which led to the method gets forgotten and people only remember the ‘formula’
or method and forget the ideas which led to it. (This is clearly NOT a good thing!)

Moschopoulos’ method for constructing the same squares is as follows. Suppose
we wish to construct a 3 × 3 square. We draw up the grid and place a 1 in the middle
cell along the bottom row. The basic rule for placing the numbers is to move down one
and to the right one, (i.e. move diagonally to the right) . In this case we end up out of
the grid so we move to the opposite side (i.e. the top) and continue to apply the rule.

4 2
3

1

Thus the 2 ends up in the top right cell. Moving ‘down one across one’, the 3 ends
up out of the cell and so we go to the opposite side and place it as shown. Now, says
Moschopoulos, when we reach a number which is a multiple of the size of the square,
the next number is placed directly above the multiple we have reached, and so the 4 is
placed directly above the 3 as shown. You can now finish off the square following the
same patterns, to get

3



4 9 2
3 5 7
8 1 6

which is the Lo Shu square.
For the 5×5 odd square, we follow the same pattern except that we place the initial

1 in the middle cell of the second line from the bottom, and for the 7 × 7 square,we
choose the middle cell of the third row from the bottom and so on. For the n = 2r + 1
side square we place the 1 in the middle of the rth row from the bottom.

11 24 7 20 3
4 12 25 8 16

17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

22 47 16 41 10 35 4
5 23 48 17 42 11 29
30 6 24 49 18 36 12
13 31 7 25 43 19 37
38 14 32 1 26 44 20
21 39 8 33 2 27 45
46 15 40 9 34 3 28

You should try making up the 9× 9 square using this method.
Clearly the first method was developed to actually contruct the first few squares

and then the ‘simpler’ method was developed which gave the same squares but with-
out having to draw the larger grids.

If you have read this far, you may now be happy that you can build your own magic
squares. On the other hand you may want to know exactly why the first method works.
If so read on!

If you look carefully at the examples given (and try a few yourself) you should be
able to see that the sum of the ‘main diagonal’ (i.e. the diagonal from the top left to
the bottom right) of an n sided square will be the sum of the n consecutive integers
starting from n2−n+2

2
, which gives the sum(

n2 − n+ 2

2

)
+

(
n2 − n+ 2

2
+ 1

)
+ ....+

(
n2 − n+ 2

2
+ (n− 1)

)
which is simply an Arithmetic series and can be summed using the usual formula to
give n

2
(n2 + 1).
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The sum of the numbers on the diagonal, from the top right to the bottom left, starts
with n+1

2
and increases by n each time, so we are summing(

n+ 1

2

)
+

(
n+ 1

2
+ n

)
+ ...+

(
n+ 1

2
+ n(n− 1)

)
.

This is also an Arithmetic series and again you can show it sums to n
2
(n2 + 1).

The columns are a little more difficult to see. Recall that the square of side n was (in
the first method) constructed using a grid of size 2n− 1. I will illustrate the idea using
the 5× 5 square.

11 24 7 20 3
4 12 25 8 16

17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

1
6 2

11 7 3
16 12 8 4

21 17 13 9 5
22 18 14 10

23 19 15
24 20

25

Now adding, for example, the first column of the 5 sided square is the same as
adding the entries in the 3rd column of the 9 sided square plus the entries in the 8th
column of that square. The second column of the magic square is simply the sum of
the 4th and 10th columns of the larger square and so on.

In general the sum of the general column is

j−1∑
k=0

[1 + (n− j)n+ (n+ 1)k] +

n−j−1∑
k=0

[(j + 1) + (n+ 1)k]

which, as expected, simplifies to n
2
(n2 + 1). The row sum can be similarly shown to be

n
2
(n2 + 1).

There are other (similar but slightly simpler) algorithms for producing other magic
squares of odd order, and also rules for moving lines and columns around to get
new squares from old ones. Moschopoulos does give a second method for produc-
ing squares of odd order and also a method for producing magic squares whose order
is a power of 2. The more general problem of finding magic squares of even order is
not covered in Moschopoulos and is in fact somewhat more difficult. The interested
reader can consult the ‘standard’ book on the subject Magic Squares and Cubes by W.S.
Andrewes, (Dover Press), but note that some of his comments on the history of magic
squares are far-fetched and incorrect. Interestingly the methods given by Moschopou-
los are NOT in his book (although similar methods are).

As far as I am aware magic squares have no practical value although they were be-
lieved in the Middle Ages to have ‘magical powers’. Nonetheless, they are fun to con-
struct and there are many interesting combinatorial questions associated with them.
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For example, how many magic squares of given order are there? As far as I am aware
this problem has not yet been fully solved.

16 50 61 3 48 18 29 35
53 11 8 58 21 43 40 26
4 62 49 15 36 30 17 47

57 7 12 54 25 39 44 22
9 55 60 6 41 23 28 38

52 14 1 63 20 46 33 31
5 59 56 10 37 27 24 42

64 2 13 51 32 34 45 19

An eighth order magic square .
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