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SOME SIMPLE IDEAS ABOUT WAVES

Bill McKee 1

Introduction
A great many aspects of our lives involve waves of one sort or another. We speak to

each other via sound waves, light and radio signals travel via electromagnetic waves.
Waves at the beach are well-known to all of us and are just one of a great many types of
waves in the atmosphere and ocean some of which have great influence on theweather,
for example. Although these different types of waves are produced by different physi-
cal mechanisms, they all have many features in common and their properties can often
be described using some quite simple mathematics.
Propagation in One Dimension

We will confine attention in this article to waves which are propagating in one di-
mension which we will call x. You can think of x as being distance measured along
an optical fibre, or distance from a radio transmitter for example. If t denotes time,
consider an expression of the form

φ = f(x− ct) (1)

where c is a positive constant, f is a function of a single variable (e.g. f(x) = sin 2x
so f(x − ct) = sin 2(x − ct)) and φ is the physical quantity of interest, for example the
excess air pressure in a sound wave or the electric field in a radio wave. To understand
the meaning of (1), consider an observer moving along the x axis with speed c towards
x = +∞. If this observer was at position x1 at time t0 then her position at time twill be
x(t) = x1 + c(t− t0) and so the value of φ which she sees will be

φ1 = f(x1 + c(t− t0)− ct) = f(x1 − ct0)

which depends only on the observer’s position at time t0. So, as far as this observer
is concerned, φ never changes. Similarly, another observer who was located at x2 at
time t0 would see φ2 = f(x2− ct0)which is dependent only upon this observer’s initial
position.

1Bill Mckee is a member of the School of Mathematics at the University of N.S.W.
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Figure 1: Illustrating how an expression of the form φ = f(x − ct) represents a distur-
bance progagating to the right without change of form when c > 0. In the time interval
from t0 to t the disturbance travels a distance x = c(t− t0).

Thus φ = f(x − ct) represents a disturbance propagating to the right with speed c
without changing its shape. Similarly φ = f(x+ ct) represents a disturbance propagat-
ing to the left without changing its shape. The first case is depicted in Figure 1.

Simple Harmonic Waves
A special case of the above type of disturbance concerns oscillatory periodic distur-

bances which may be described by expressions of the form

φ(x, t) = A cos k(x− ct+ θ)

where A, k, c and θ are constants. This can also be written φ(x, t) = A cos(kx − ωt + ǫ)
where ω = kc and ǫ = kθ.Now we know that the cosine function has period 2π so that
cos(X ± 2π) = cosX for any X . (Remember that we use radians not degrees). Thus

φ(x+ 2π/k, t) = A cos(k(x+ 2π/k)− ωt+ ǫ)

= A cos(kx+ 2π − ωt+ ǫ) = A cos(kx− ωt+ ǫ) = φ(x, t).

Thus, φ has period 2π/k in x. Similarly φ(x, t + 2π/ω) = φ(x, t). It is convenient to
define λ = 2π/k and T = 2π/ω. The names and units of the various quantities which
have cropped up here are displayed in the following table.

Quantity Name Units
A Amplitude Depends on physical situation
k Wavenumber radians/metre

λ = 2π/k wavelength metres
ω frequency radians/second

T = 2π/ω period seconds
ǫ phase angle radians

c = ω/k wave speed metres/second
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You may be more familiar with the definition of frequency in terms of Hertz, i.e.
cycles per second. If f is the frequency in Hertz, then ω = 2πf. Thus if f = 50 Hertz,
ω = 100π radians/sec. The units of A will depend on the situation we are studying.
For water waves, φ might be the height of the instantaneous water surface above still-
water level, so A would be measured in metres. For sound waves, φ is a pressure so is
measured in Newtons/metre2. The meanings of λ and T are shown in Figures 2 and
3 respectively. The first can be thought of as a snapshot at fixed t . The variable φ is
then periodic in xwith period λ . The second represents measurements made at a fixed
position x. The variable φ is then periodic in time with period T .
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Figure 2: Illustrating the meaning of wavelength λ .

The quantity c is called the wave speed or wave velocity or phase velocity or phase
speed or “celerity” (the terms “speed” and “velocity” are commonly used interchangably
in this context, although that usage is not strictly correct). You can think of c as the
speed with which an individual wave crest propagates along. (Imagine standing on a
cliff and watching ocean waves propagating towards the shore. Keep your eyes on a
particular crest as it moves. The speed with which it moves will be c).
Wave Dispersion

There are two fundamentally different types of wave motions:

i) Non-dispersive in which c is a constant

ii) Dispersive inwhich c depends on thewavelength, or equivalently on the frequency,
of the waves.

Now the relation between the wavelength and the wave frequency depends on the
physical situation we are talking about. In general, we will have ω = W (k) where the
function W depends on the physics. This is called the dispersion relation. If W (k) =
Ck where C is constant, then the wave speed is

c = W/k = Ck/k = C.
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Figure 3: Illustrating the meaning of wave period T .

In this case, all waves travel with the same speed c = C independent of their wave-
length. Some examples of these are sound waves in a room for which c ≃ 330 me-
tres/second (of course this depends on the atmospheric temperature and pressure)
and electromagnetic waves in air for which c ≃ 3 × 108 metres/second. For us it is
important that sound and electromagnetic waves are non-dispersive. When we speak,
we produce sounds of many different frequencies at the same time. If these all trav-
elled at different speeds, our words would become less and less intelligible the further
they travelled. Similar comments apply to radio waves.

Rather more interesting are dispersive waves in which c depends on k. In many, but
not all, types of wave motion, c is a decreasing function of k so that long waves (small
k, so large λ = 2π/k) travel faster than short waves (large k, so small λ).

One common example of this type of wave motion is water waves for which

c2 =
g

k

ekH − e−kH

ekH + e−kH
.

Here, H is the (constant) water depth and g is the acceleration due to gravity. When
kH is large (which means wavelength <<depth) it can be shown that

c2 ≃ g

k
=

gλ

2π
.

[Try and prove this yourself by recalling the behaviour of ex and e−x as x → ∞]. So for
“short” waves the wave speed c is proportional to the square root of the wavelength.
When kH is small (wavelength >> depth) it can be shown that

c2 ≃ gH

which means that all long waves travel at the same speed
√
gH. A graph of c/

√
gH

as a function of kH is given in Figure 4. This is an example of what is termed a non-
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dimensional plot. Both c and
√
gH are speeds, so c/

√
gH has no dimensions and is

independent of the system of units employed. Similarly for kH.
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Figure 4: The non-dimensional phase speed c/
√
gH of water waves as a function of

kH = 2πH/λ where H is the water depth and λ the wavelength.

Group Velocity
We have seen how the individual wave crests propagate at speed c, the phase ve-

locity. In any real situation, we never have just a single frequency or wavenumber
present, but a spread of them. This introduces a second velocity – the group velocity.
To understand how this arises, consider two waves of the same amplitude

φ = A cos(k1x− ω1t+ ǫ1) + A cos(k2x− ω2t+ ǫ2) .

Using cos(a− b) + cos(a− b) = 2 cos a cos b we can write this as

φ = 2 cos

(

k1 + k2
2

x− ω1 + ω2

2
t+

ǫ1 + ǫ2
2

)

× cos

(

k1 − k2
2

− ω1 − ω2

2
t+

ǫ1 − ǫ2
2

)

.

This consists of the product of two waves one travelling at speed cW =
ω1 + ω2

k1 + k2
and the

other at cG =
ω1 − ω2

k1 − k2
.

Suppose now that ω1 and ω2 are close together, and since ω1 and ω2 both satisfy the
dispersion relation, k1 and k2 are also close together. So put ω1 = ω2 + δω, k1 = k2 + δk
where δω and δk are both small.

Then

cW =
ω2 + ω2 + δω

k2 + k2 + δk
=

ω1 + ω1 − δω

k1 + k1 − δk
≃ ω1

k1
≃ ω2

k2
= c
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Figure 5: A plot of φ = A cos(k1x − ω1t + ǫ1) + A cos(k2x − ω2t + ǫ2) when k1 ≃ k2 and
ω1 ≃ ω2 .

and

cG =
ω2 + δω − ω2

k2 + δk − k2
=

δω

δk
≃ dω

dk

The physical picture is thus one of a “carrier wave”

cos

(

k1 + k2
2

x− ω1 + ω2

2
t+

ǫ1 + ǫ2
2

)

(which propagates at speed cW ≃ ω1

k1
≃ ω2

k2
) and has a varying amplitude given by

A(x, t) = 2 cos

(

x
δk

2
− t

δω

2
+

ǫ1 − ǫ2
2

)

.

This amplitude has wavelength 2π/(δk/2) =
4π

δk
which is very long compared with the

wavelength
4π

k1 + k2
of the carrier wave and travels at speed cG =

δω

δk
. When δk is small,

cG ≃ dω
dk

= cg. The situation is shown in Figure 5 .
These ideas are readily extended to situations where we have waves of many dif-

ferent frequencies present, not necessarily all of the same amplitude. If all the waves
have frequencies close to some central frequency ω0 and ω0 = W (k0) is the dispersion
relation, then the picture which emerges is

φ = A(x, t) cos(k0x− ω0t+ ǫ0) (2)

where A(x, t) is the slowly-varying amplitude which propagates at speed

cg =
dω

dk
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evaluated at k = k0. This speed is called the group speed or group velocity, and in
many ways is more fundamental than the phase velocity since it is generally the speed
with which the energy of the wave propagates. If the waves are non-dispersive, then

the dispersion relation is ω = ck where c is a constant. Then cg =
dω

dk
= c so the phase

and group speeds are the same. If the waves are dispersive, then c depends on k so

cg =
d

dk
(kc) = c+ k

dc

dk
.

This is different from c. This has the surprising consequence that although the individ-
ual wave crests are travelling at speed c, the energy of the disturbance is travelling at a
different speed cg. The expression (2) is sometimes referred to as a amplitude-modulated
wavetrain and is depicted in Figure 6. The individual wave crests travel at the phase
speed c = ω0/k0 but the amplitude pattern travels at the group speed cg.

Figure 6: An amplitude-modulated wavetrain given by (2)

Some Examples

1. Deep water waves for which ω2 = gk. Then ω =
√

gk so
dω

dk
=

1

2

√

g/k =
1

2

ω

k
=

1

2
c. Thus the group velocity of deep water waves is only half their phase velocity.

Observations of storm-generated waves at sea confirm this – the time taken for
waves of period T to travel a distance L from their region of generation to a
distant observing station is not L/c but rather L/cg where cg is the group velocity
of waves of period T . Thus, it takes thewaves twice as long to reach the observing
station than one would naively expect.

2. Rossby Waves. These are special kind of long period wave in the atmosphere
and ocean and are due to the rotation of the earth. If x is measured eastwards,
the dispersion relation is

ω =
−βk

k2 + δ2
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where β and δ are positive physical constants. For these waves

c =
ω

k
=

−β

k2 + δ2
.

Thus, c < 0 so the wave crests travel always towards the west.

However cg =
dω

dk
=

−β(k2 + δ2 − 2k2)

(k2 + δ2)2
= β

(k2 − δ2)

(k2 + δ2)2
.

Thus,
dω

dk
is positive if k2 > δ2, i.e.

2π

k
<

2π

δ
and is negative if k2 < δ2, i.e.

if
2π

k
>

2π

δ
. Thus, long waves (those with wavelength λ > 2π/δ) have group

velocities in the same direction as the phase velocity but short waves (those with
wavelengths λ < 2π/δ) have group velocities opposite to the phase velocities. For
these short waves, the individual wave crests are propagating towards the west,
yet the energy is propagating towards the east. This seemingly bizarre behaviour
is not atypical of many types of waves which occur in the atmospere and ocean.
For example, there are other types of waves called internal waves which are
due to density variations in the atmosphere or ocean. For these internal waves,
the phase and group velocities are at right angles to each other.

Summary
Simple waves may be described by well-known trigonometric functions. Two fun-

damentally different velocities emerge – the phase velocity which tells us how indi-
vidual wave crests travel and the group velocity which tells us how the energy of the
wave disturbance as a whole travels. These two velocities are in general different and,
indeed, may nor even be in the same direction. These ideas underlie many applications
in meteorology, civil engineering, communications technology and many other fields
in which waves play a role.
Exercise

Very short water waves are influenced by surface tension – the force that enables
mosquitoes to stand and walk on the surface of water. If the water is deep, the disper-
sion relation can be shown to be

ω2 = gk + Fk3

where F is a physical constant which measures the strength of the surface tension.

a) Show that the phase speed has a minimum when k =
√

g/F = km.

b) Evaluate the wavelength λm = 2π/km and the minimum phase speed when g =
9.8m/sec and F = 0.74× 10−4metre3/sec2.

(Ans: λm ≃ 1.726× 10−2m., i.e. 1.726 cm and cmin = 2.32× 10−1 metre/sec).

c) Find the group speed and show that it is less than the phase speed when λ > λm

but greater than the phase speed when λ < λm. Very short waves (i.e. those with
λ < λm) are called capillary waves. For them, the restoring force of surface tension
is more important than that of gravity. Try to show that cg → 3c/2 as λ → 0.
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