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HOW TO CONSTRUCT REGULAR 7-SIDED POLYGONS
— AND MUCH ELSE BESIDES

Part 1 — The Basic Construction
by

Peter Hilton' and Jean Pedersen?

1. Introduction

Those of you who have taken plane geometry will know that the Greeks were fas-
cinated with the challenge of constructing regular polygons — that is, those polygons
with all sides of the same length and all angles equal. We will refer to such regu-
lar N-sided polygons simply as regular N-gons. The Greeks wanted to create these
polygons by using what is called a Euclidean construction, that is, by using only an
unmarked straight edge and a compass. The Greeks (ca. 350 B. C.) were successful in
devising a Euclidean construction for an N-gon where

N =2°N,, with Ng=1, 3,5, or15 and ¢ > 0.

Of course, weneed N >3 for the polygon to existat all!

This is as far as the Greeks were able to go with their constructions and, in fact, it
appears that no one else was able to make much more progress until about 2000 years
later when Gauss (1777-1855) completely settled the questions inherent in the original
problem. Gauss proved that a Euclidean construction of a regular /N-gon is possible
if and only if the number of sides N is of the form N = 2°pipyps - --pr, where ¢ >0
and the p; are distinct Fermat primes — these are primes of the form F, = 2*" + 1.

Gauss’s discovery was remarkable — and, of course, it tells us precisely which N-
gons admit a Euclidean construction, provided we know which Fermat numbers F,
are prime. Now it turns out that not all Fermat numbers are prime. Euler (1707
- 1783) showed that F; = 2% + 1 is not prime, and, in fact, to this day, although
many composite Fermat numbers have been identified, the only known prime Fermat
numbers are

Fy=3, Fy,=5 Fy,=17, Fy=257, F, =65537.

Thus we see that, even with Gauss’s contribution, a Euclidean construction of a regular
N-gon is known to exist for only a finite number of values of N, and even for these
N we do not in all cases know an explicit construction.
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Despite our knowledge of Gauss’s work, and despite the availability of computers
that can easily produce these regular polygons in a state referred to as virtual reality,
we would like to know how to construct for ourselves, with our own hands, using
easily available materials from the real world, all regular N-gons.

In this article (and its sequel) we will show you that, slightly redefining the problem
formulated by the Greeks, you will be able, in principle, to construct, for any given
value of N, a polygon that will be an arbitrarily good approximation to a regular
N-gon. Furthermore, all this can done by a systematic and explicit paper-folding
procedure that we will describe in detail, which depends, as you might expect, only on
the precise value of N.

We should say something here about our methods of construction. We argue that
in practice the approximations we obtain by folding paper are quite as accurate as the
real world constructions obtained with a straight edge and compass — for the latter
are only perfect in the mind. In both cases the real world result is a function of human
skill, but our procedure, unlike the Euclidean procedure, is very forgiving, in that it
tends to reduce the effects of human error — and, for most people, it is far easier to
bisect an angle by folding paper than by Even when geometric figures are obtained
from the best of modern-day computers their accuracy depends on the precision of the
computer calculation and the resolution of the printer.

We will now get started on the paper-folding. It turns out that this will naturally
lead us into some interesting number theory as well, but we will have to postpone that
to the second part of our article in the next issue of Parabola.

2. The FAT Algorithm

We now explain a precise and fundamental folding procedure, involving a straight
strip of paper with parallel edges (adding machine tape or ordinary unreinforced gummed
tape work well). This procedure makes the top edge of the strip describe the sides of
a regular N-gon, where N > 3.

For the moment assume that we have a straight strip of paper that has creases or
folds along straight lines emanating from vertices at the top edge of the strip. Further
assume that the creases at those vertices, labelled A, (n = 0, 1, ---), form identical

angles of® % with the top edge (as shown in Figure 1(a)). Suppose further that these

vertices are equally spaced. If we fold this strip on the line marked A, C,, as shown in
Figure 1(b)
(with n = 0), and then, with a twisting motion, fold the tape again, this time on
the line marked A, B,, as shown in Figure 1(b), the direction of the top edge will be
rotated through an angle of 2F. We call this process, of Folding And Twisting, the
FAT-algorithm.

Now observe that if the FAT-algorithm is performed at a sequence of N vertices
A, for n=0,1,2,---, N—1, then the top edge of the tape will have turned through

31f you are not familiar with radian measure all you need to know here is that 7 = 180 ° —and in

the context of this article it may be useful to simply think of 7 as representing the straight angle. Thus

5 represents a right angle, % represents 60 °, and 27 stands for “all the way round the circle’.



an angle of 27, so that the point Ay will come into coincidence with A,. Thus
the top edge will form a regular N-gon! Figure 2 illustrates a portion of the regular
N-gon formed using the FAT-algorithm.

You might like to practise the FAT-algorithm by constructing a regular convex 8-
gon.* Figure 3(a) shows a straight strip of paper on which the dotted lines indicate
certain, theoretically exact, crease lines. In fact, these crease lines occur at equally
spaced intervals along the top of the tape so that the angles occurring at the top of
each vertical line are (from left to right) 7, 7, §, §. Figuring out how to fold a strip of
tape to obtain this arrangement of crease lines should be an interesting exercise for any
student who has had a course in plane geometry (complete step-by-step instructions
are given in [1]). What interests us here is the observation that this tape has, at equally
spaced intervals along the top edge, adjacent angles each measuring %, and we can
therefore execute the FAT-algorithm at 8 consecutive vertices along the top of the tape
to produce the regular octagon shown in Figure 3(b). (Of course, in constructing the
model one would cut the tape on the first vertical line and glue a section at the end to
the beginning so that the model would form a closed polygon.)

Notice that the tape shown in Figure 3(a) also has suitable crease lines that make
it possible to use the FAT-algorithm to fold a square. We leave this as an exercise for
those who are interested and turn to a more challenging construction.

Now, since the regular convex 7-gon is the first polygon we encounter for which
we do not have available a Euclidean construction, we are faced with a real difficulty
in making available a crease line making an angle of 7 with the top edge of the tape.
We proceed by adopting a general policy, that we will eventually say more about —
we call it our optimistic strategy. Figure 4 shows the step-by-step folding of the ap-
propriate tape. The rationale is as follows. Assume that we can crease an angle of
Z (certainly we can come close) as shown in Figure 4 (part 3). Then it is a trivial
matter to fold the top edge of the strip DOWN to bisect this angle, producing two ad-
jacent angles of T at the top edge as shown in Figure 4(part 5). (We say that 7 is the
putative angle on this tape.) Then, since we are content with this arrangement, we
go to the bottom of the tape where we observe that the angle to the right of the last
crease line is % — and we decide, as paper folders, that we will always avoid leaving
even multiples of 7 in the numerator of any angle next to the edge of the tape, so
we bisect this angle of %, by bringing the bottom edge of the tape UP to coincide
with the last crease line as shown in Figure 4(part 6). We settle for this (because we
are content with an odd multiple of 7 in the numerator) and go to the top of the tape
where we observe that the angle to the right of the last crease line is “* —and, since
we have decided against leaving an even multiple of 7 in any angle next to an edge
of the tape, we are forced to bisect this angle twice, by folding DOWN, as shown in
Figure 4(parts 8,9,10),0obtaining the arrangement of crease lines shown in Figure 4(part
11).

Now we notice that something miraculous has occurred! If we had really started with

* The point here is to practice folding paper and executing the FAT-algorithm, since we know that
you are probably already familiar with a Euclidean construction of the regular octagon.



an angle of %%, and if we now continue introducing crease lines by repeatedly folding
the tape DOWN twice at the top and UP once at the bottom, we get precisely what
we want, namely, pairs of adjacent angles, measuring 7, at points at equally spaced
intervals along the top edge of the tape.” Let us call this folding procedure the D*U*-
folding procedure (or, more simply the (2, 1)-folding procedure) and call the strip of
creased paper it produces D?U*-tape (or, again more simply, (2, 1)-tape).

We suggest that before reading further you get a piece of paper and fold an acute
angle which you call an approximation to 2-. Then fold about 40 triangles using the
D?U-folding procedure, throw away the first 10 triangles, and try to construct the FAT
7-gon shown in Figure 5(b). You may then believe that the D?U'-folding procedure

produces

tape on which the angles approach the values indicated in Figure 5(a). But, how do we

prove that this evident convergence takes place? First, let’s admit that the first angle

folded down from the top of the tape as shown in Figure 4(part 3) might not have been

precisely 2%. Then the bisection forming the next crease would make the two acute

angles nearest the top edge in Figure 4(part 5) only approximately 7; let us call them

I + ¢ (where ¢ may be either positive or negative)®. Consequently the angle to the
6

right of this crease, at the bottom of the tape, would measure = — € When this angle

is bisected, by folding up, the resulting two new acute angles nearest the bottom of the
tape in Figure 4(part 7) would each measure 2% — £, forcing the angle to the right of
this crease line at the top of the tape to have measure “F + £. When this last angle is
bisected twice by folding the tape down the two acute angles nearest the top edge of
the tape, as shown in Figure 4(part 11), will measure 7 + . This should make it clear
that every time we repeat a D?U'-folding on the tape the error is reduced by a factor
of 8.

Now it should be clear how our optimistic strategy has paid off. By assuming we
have an angle that, when bisected, gives an angle of 7 at the top of the tape to begin
with, and folding accordingly, we get what we want — successive angles at the top of
the tape which, as we fold, continue to get closer and closer to %!

You might now like to begin the folding shown in Figure 4 and then repeat the
parts 7 through 12 until you notice that the pattern of lines on the tape become more
and more regular. Throw away the first part of the tape (say, the first 8 triangles) and
use the remaining tape to construct your own 7-gon.

Observe that we may also use this tape, after making suitable secondary fold lines,
to construct 14-gons, 28-gons, 56-gons, or, more generally, 2"7-gons. For example, to
make the D?U*-tape suitable for constructing 14-gons, all you need to do is bisect, by
folding, 14 consecutive angles along the top of the tape that already make an angle
of 7 with the top edge and then perform the FAT algorithm on those 14 consecutive
vertices. To obtain 28-gons, you would repeat the process of inserting the secondary

fold lines — but this time on the tape that already has lines that make an angle of

> Notice how hopelessly inconvenient degree measure would be for describing our procedure.
® It may help the reader to follow the argument if he (or she) pencils in the size of the angles referred
to in Figure 4 as she (or he) reads the paragraph.



1; with the top edge of the tape.

From what we have just observed about constructing 2"7-gons from tape suitable
for constructing 7-gons we can see that our major problem has been reduced to figur-
ing out how to construct N-gons when N is odd.

It is now natural to ask for which odd N can a procedure like the one we used for
the 7-gon be obtained? We will discuss this question in the next part of this article.

Meanwhile, you might like to do the following “Paper-folding Experiments” in-
volving period-1 folding procedures. The intended outcomes of these experiments
will appear in the next issue of Parabola, along with Part 2 of this article.

Experiment 1: Take a strip of paper and fold it using the D*U*-procedure. That is,
repeatedly bisect (just once) the angle that appears at the top of the tape, then the an-
gle that appears at the bottom of the tape. This should eventually produce a string
of equilateral triangles. See if you can also fold a FAT triangle with this tape, by exe-
cuting the FAT algorithm at points equally spaced (sufficiently far apart) along the top
edge of the tape.

Experiment 2: Take a strip of paper and fold it using the D?U?-procedure. That is,
repeatedly bisect twice the angle that appears at the top of the tape, then the angle that
appears at the bottom of the tape. Throw away the first 10 triangles and experiment
with the remaining strip of paper. For example, try folding on just the ‘short lines’
— or just the "long lines’. Try also folding a FAT polygon using the smallest angle on
the tape, that is the angle between the longest fold line and an edge of the tape. The
number of sides in your FAT polygon will tell you the size of the smallest angle on this
tape.

Experiment 3: Try, on the basis of your results for Experiments 1 and 2, to guess what
will happen here before you do this experiment. Take a strip of paper and fold it using
the D3U3-procedure. That is, repeatedly bisect three times the angle that appears at
the top of the tape, then that at the bottom of the tape. Throw away the first 10 triangles
and experiment with the remaining strip of paper. For example, try folding on just the
‘short lines’, just the ‘'medium lines, or just the ‘long lines’. Try also folding a FAT
polygon using the smallest angle on the tape, that is the angle between the longest fold
line and an edge of the tape. The number of sides in your FAT polygon will tell you
the size of the smallest angle on this tape. Was your guess correct?
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