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A SLICE OF THE PI

Peter G. Brown.

If you were to ask a variety of people what π was, you would probably get a variety of
different answers.
The Bible gives π as 3, or at least implies this in chapter 7 of the first Book of Kings
verse 23, and this was the value used by the ancient Babylonians.
The ancient Egyptians, in the famous Ahmed Papyrus, (which contains a lot of the
mathematics used and developed by the Egyptians) gave a formula for the area of a

circle which, if correct, would give π as
(
16

9

)2
, (≈ 3.1605).

The Chinese mathematician Chang Hing, writing about 139 AD gives π as
√
10, (≈

3.16228).
An engineer or surveyor might say 22

7
, which differs from the true value of π in the 3rd

decimal place. A better rational approximation, discovered by Archimedes is 355

113
.

In decimal form π ≈ 3.141592654..... while 22

7
= 3.142857... and 355

113
≈ 3.1415929...

A teacher of Primary schoolmight (correctly) say, that π is the ratio of the circumference
of any circle to its diameter, which gives a lot more insight into what π is than simply
giving a numerical value.

A Pure Mathematician might say

π = 4

∫
1

0

1

1 + x2
dx.

(If you haven’t done 3 Unit Maths in Year 12, this won’t make any sense to you.)
In 1783 William Shanks published the decimal expansion of π to 707 decimal places. It
took him 15 years (!) to do the calculation (by hand of course). When modern com-
puters were first being developed, one of the designers’ favourite test programs was
to compute the value of π. Thus, in 1949, π was calculated to 2035 decimal places and
the digits were compared with Shanks’ computations. Unfortunately, Shanks made a
mistake in 528th digit, and so all the digits after that were wrong. Shanks would have
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been horrified no doubt that so many years of his life had been wasted, but mercifully
he was not around to hear the bad news.
There have beenmany books written which contain a remarkable number of incredible
results about this very beautiful number, but as the title of this article implies, I want
to just take a ‘slice’ of some of the many amazing facts about this number.
Several years ago, a newspaper article appeared in America, on April 1st to be more
precise, which claimed that ‘computer scientists’ had ‘proven’ π to be a rational num-
ber, that is, a number which can be expressed as a fraction. The article said that the
scientists got a computer to calculate π to a large number of decimal places and found
that eventually, they got a very large number of zeros, and hence they concluded that
π was rational! As you may have guessed by the date, the article was a practical joke,
but embarrassingly an Australian journalist, who happened to see it, reprinted the arti-
cle in the Science and Technology section of the Australian newspaper several months
later! I can still recall a yell of horror from one of my colleagues in the tea room at
lunch time when he read it, and he quickly went to ’phone the newspaper to tell them
of the impossibility of this nonsense.
One of the interesting properties about the number π is that it is not rational, that is, it
cannot be written as a fraction. Fractions such as 22

7
and 355

113
are merely approximations

and are not equal to π. The proof of the irrationality of π is quite complicated and in-
volves some intricate use of calculus.
The number π then is certainly irrational but it differs in a certain sense from some
of the other examples of irrational numbers such as

√
2. The number

√
2 is a solu-

tion of a simple polynomial (in fact quadratic) equation with integer co-efficients, i.e

x2 − 2 = 0. The irrational number
3

√

2−
√
2 is a solution of x6 − 4x3 + 2 = 0. Such

numbers which are the roots of polynomials with integer co-efficients are called alge-
braic numbers. (Can you prove that cos 60◦ and cos 20◦ are algebraic?)
The number π is NOT an algebraic number. That is, we cannot find a polynomial equa-
tion with integer co-efficients which has π as a solution. This fact was proven in 1882
by Lindemann. The proof, as you might expect is very difficult. If you have studied
senior mathematics and have met the number e (≈ 2.71828..), you might like to know
that e is also not algebraic. By the way, in a very precise sense, most real numbers are
of this type!
The great mathematician Euler, who lived in the 18th century, did some rather incred-
ible mathematics using infinite series. Some of what he did was in fact incorrect and
other parts of it, which gave correct results, were based on some very dubious meth-
ods. Nonetheless, Euler did manage to arrive at some remarkable (and correct) con-
clusions by playing with the infinite. One particularly amazing result he achieved was
the following. I must stress that what follows is NOT correct mathematics although
the arguments can be made water-tight with a lot of work.
Recall that if I give you a polynomial then there is a simple relationship between the
roots of the polynomial and it’s co-efficients1.

1See Parabola Vol.33 No. 2 (1997)
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Suppose we have a polynomial p(x) with constant term 1,

p(x) = 1 + a1x+ a2x
2 + ...+ anx

n,

and roots α1, α2, ..., αn. Then

xnp(
1

x
) =

(

1 +
a1

x
+ ...+

an−1

xn−1
+

an

xn

)

xn = an + ...+ a1x
n−1 + xn

is a polynomial with roots 1

α1

, 1

α2

, ..., 1

αn

and the sum of the roots is simply −a1
1

= −a1.

That is
1

α1

+
1

α2

+ ...+
1

αn

= −a1 (1).

We now look at the function f(x) = sin x. Euler thought of sin x as a sort of ‘polynomial
with infinitely many terms’. To find out what the polynomial is, suppose we can write

sin x = a0 + a1x+ a2x
2 + ...+ anx

n + ...

Putting x = 0 we have a0 = 0. If we differentiate both sides (assuming that we are
allowed to differentiate infinitely many terms) we obtain

cosx = a1 + 2a2x+ 3a3x
2 + ........

and again putting x = 0 we have a1 = 1. If we continue to differentiate and put x = 0
we find that a2 = 0, a3 = −1

6
, a4 = 0, a5 =

1

120
, ... (You might like to try this out and see

if you can see a pattern.)
Thus, assuming that what we are doing actually makes sense, we have

sin x = x− 1

6
x3 +

1

120
x5 − .....

Now, armed with these ideas we can follow Euler’s path.
He took the above ‘polynomial’ for sin x and wrote

sin x

x
= 1− 1

6
x2 +

1

120
x4 − .....

and observed that the left hand side is 0 precisely when x = ±π,±2π,±3π, ... so he
thought of these numbers as the ‘roots’ of the polynomial on the right hand side. He
then put w = x2 giving

sin
√
w√

w
= 1− 1

6
w +

1

120
w2 − .....

which is a polynomial in w with constant term 1, and with roots w = π2, 4π2, 9π2, ...

The final step in his work was to use equation (1), noting that a1 = −1

6
and so we have

1

π2
+

1

4π2
+

1

9π2
+ .... =

1

6
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or
1

12
+

1

22
+

1

32
+ .... =

π2

6
.

Most mathematicians are nowadays justly horrified at the way Euler played with the
infinite in such a cavalier way (since one can arrive at incorrect answers if one is not
careful), but in this case Euler did in fact arrive at a correct result, which is one of the
most beautiful in all of mathematics. In words it says that the sum of the reciprocals of

the squares of the positive integers gets closer and closer to π2

6
the more terms we take!

For example, if we take a million terms of the series we get approximately 1.644933968,

while π2

6
is approximately 1.644934068, an error of about 10−7.

Euler went further and did a similar calculation using cos x instead of sin x and ob-
tained the equally stunning result

1

12
+

1

32
+

1

52
+ .... =

π2

8
.

Nowadays these results are obtained in a rigourousway using a branch ofmathematics
called Fourier Series, which had not been discovered in Euler’s time.
Let us now turn from what is commonly known as ‘analysis’ to geometry.
The ancient Greeks (and others) tried desperately to find a construction which gives
a length π. By ‘construction’ they meant, a finite number of steps using only a pair
of compasses and an (unmarked) ruler starting with a line segment of unit length. In
particular they attempted to perform a construction known as ‘squaring the circle’. The
problem was to construct a square with the same area as a given circle. If we make the
circle radius 1 then the problem was to construct a square with area π, i.e. with side
length

√
π. Unfortunately for the ancient Greeks, this cannot be done using only the

tools I mentioned above.
On the other hand if infinitely many constructions are allowed, then we can construct a
sequence of lengths whose sum approaches π. This was first done, as far as I know, by
Vieta (about 1580). What he does is to construct a regular polygon inside a circle, and
by making the number of sides larger and larger, our polygon gets closer and closer to
the circle. So if the radius of the circle is 1, then the perimeter of the inscribed polygon
must be getting closer to 2π. The construction is as follows:
Draw a regular polygon with n sides inside a circle of radius 1.
For the sake of the diagram I have taken n = 3 and drawn the 3 sided polygon ACE.
Now bisect each of the sides and draw the regular inscribed polygon with 2n sides. (In
the diagram this is the hexagon ABCDEF .)
Let sn denote the side length of the polygon with n sides, and so s2n is the length of
the side of the polygon with 2n sides. Thus, in the diagram below, |AD| = 2, |CE| = sn
and |DE| = s2n.

Clearly the triangles EDG and CDG are congruent, (why?) and so EC intersects

AD at right-angles. Also recall that the angle ÂED is a right-angle.
Now the area of ∆ADE = 1

2
|DE|.|AE|, but also if we think of AD as the base, the area

of the triangle is also equal to 1

2
|AD|.|EG| and so

|DE|.|AE| = |AD|.|EG|
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A

B C

D

EF

G

Using Pythagoras’ theorem, we have

|DE|
√

|AD|2 − |DE|2 = |AD|.1
2
|EC|

and so, substituting, we get

s2n

√

4− s2
2n = sn.

Squaring both sides and re-arranging the terms, gives

s4
2n − 4s2

2n + s2n = 0

which is just a quadratic in s2
2n

Solving this equation for s2n and taking the negative root (since sn < 2 and s4 =
√
2),

we have the relationship

s2n =

√

2−
√

4− s2n.

This tells us how to build up the side length of the 2n-gon from the side length of the
n-gon.

Now s4 =
√
2 so s8 =

√

2−
√
2, s16 =

√

2−
√

2 +
√
2 and s32 =

√

2−
√

2 +
√

2 +
√
2.

Continuing the process, we have

s2n =

√
√
√
√
√2−

√

2 +

√

2 +
√
2 + ...

︸ ︷︷ ︸

n−2 times

.

The perimeter of the regular 2n-gon is thus 2ns2n , and so, as the circumference of the
circle is 2π, we have

2n−1

√
√
√
√
√2−

√

2 +

√

2 +
√
2 + ...

︸ ︷︷ ︸

n−2 times

−→ π as n → ∞.

For example, if we put n = 6 in the above formula, we get
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25

√
√
√
√

2−

√

2 +

√

2 +

√

2 +
√
2 ≈ 3.140339

which is correct to two decimal places. (You might like to experiment with your calcu-
lator or computer to see how many terms are needed to give π correct to three decimal
places.)
For thousands of years, the number π has fascinated the human mind. It is one of the
most interesting numbers in mathematics and has the habit of turning up when least
expected.
To finish this brief look at π, let me quote a ‘well-known’ but impressive formula which
links together in a profoundly simple way, the four ‘fundamental’ constants of mathe-
matics

eiπ = −1.

A Large Prime Number

Question What is the largest prime number?
Answer There is no largest prime number (can you prove this?).

Question What is the largest known prime number?
Answer The largest known prime number is

23021377 − 1.

It has 909,526 digits (try writing down a number this big!) and was discovered on 27th
January by a 19 year-old student called Roland Clarkson as part of GIMPS (the Great
Internet Mersenne Prime Search). All the largest known prime numbers are Mersenne
primes (those of the form 2p − 1 where p is a prime number), and this is the 37th one
found.

For more information on large prime numbers (including Mersenne primes), visit
the internet address

www.utm.edu/research/primes/notes
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