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HOW TO CONSTRUCT REGULAR 7-SIDED POLY-

GONS — AND MUCH ELSE BESIDES

Part 2 — Some New Mathematics

by

Peter Hilton1 and Jean Pedersen2

Introduction

In Part 1 (Parabola Vol. 34, No 1) we introduced you to a basic construction whereby

we folded down m times at the top of a tape and folded up n times at the bottom of

the tape (see Figure 1). Such a procedure is called a period-2 folding procedure, more

specifically, the (m,n)-folding procedure. In fact, we only discussed the special cases

(m,n) = (1, 1), (2, 2), (3, 3), (2, 1)

but it surely must have been clear that we could have carried out the basic construction for

any positive integers m,n. We discuss here what we would have got, in general.

Suppose the angle appearing at the top of the tape at the kth stage is uk; and the

angle appearing at the bottom of the tape at the kth stage is vk (see Figure 1). Then,

summing the angles, we get at the bottom of the tape at the kth stage (remember we are

using radian measure),

uk + 2nvk = π

and at the top of the tape at the (k + 1)st stage

vk + 2muk+1 = π
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Figure 1: kth stage (period-2 folding)

so that

uk + 2n(π − 2muk+1) = π

or

2m+nuk+1 − uk = (2n − 1)π (1)

Thus the successive angles at the top of the tape, namely,

u0, u1, u2, · · ·, uk, uk+1, · · ·

are related by equation 1 and we ask the question — how do these angles behave as k gets

large? (We saw in Part 1 what happened in the special case m = 2, n = 1; but this case

wasn’t really very special!)

In fact, to answer our question, we will make the problem even more general! Suppose

successive numbers

u0, u1, u2, · · ·, uk, uk+1, · · ·

are related by

auk+1 = uk + b, with a > 1. (2)

We will show that then uk gets closer and closer to u, which is the solution to the

associated equation

au = u+ b, (3)
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that is

u =
b

a− 1
. (4)

For let us set ek = uk − u. Then uk = ek + u, so equation 2 becomes

a(ek+1 + u) = (ek + u) + b

or

aek+1 = ek, since au = u+ b. (5)

How, then, does the sequence e0, e1, · · ·, ek, ek+1, · · · behave? We have

e1 =
1

a
e0

e2 =
1

a
e1 =

1

a2
e0

e3 =
1

a
e2 =

1

a3
e0

and, in general, ek =
1

ak
e0

But, since a > 1, it follows that
1

ak
gets smaller and smaller as k increases so that, as

we say, ek (the error at the kth stage) tends to 0 as k tends to infinity. Thus uk tends

to u =
b

a− 1
. It is important for our paper-folding procedure to note that the value of u

is quite independent of the initial error e0. It is determined by the attractive device of

’ignoring the suffixes on the u’s’ ! Thus, reverting to (1.1), we find that the angle at the

top of the tape, uk, tends to

u =
2n − 1

2m+n − 1
π.

Notice that all this agrees with what we found in Part 1 in the case m = 2, n = 1: for

then u = π
7
.

Now suppose that (as in the case m = 2, n = 1) 2m+n
−1

2n−1
happens to be an integer, say,

s = 2m+n
−1

2n−1
. Then by using the (m,n)-folding procedure, followed by the FAT algorithm,

we can fold a regular s- gon. Thus we have the following fundamental questions:

Question 1: When is
2m+n − 1

2n − 1
an integer?

Question 2: How do we recognize that an integer s is of the form
2m+n − 1

2n − 1
?
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Question 3: If the integer s is of this form, how do we determine m and n

as functions of s?

We answer these questions in Section 2; and we make some further developments of these

mathematical ideas in Section 3. However, it is plain to see, from elementary algebra, that

if n = m then s = 22n−1
2n−1

= 2n + 1. Thus (as you may have guessed from doing the

three experiments at the end of Part 1) the DnUn procedure (see Figure 2) produces tape

on which the smallest angle uk approaches
π

2n + 1
. It is a special feature of this tape that

you can use it to produce regular (2n + 1)-gons not only by the FAT algorithm, but also by

folding on consecutive crease lines of the same length (and there will be n different lengths

from which to choose).

uk

uk uk+1

Fold down n times

Fold up n times

Figure 2: kth stage (period-1 folding)

Folding Numbers

We call an integer of the form
2m+n − 1

2n − 1
, where m, n are positive integers, a folding number.

We know from the argument in the Introduction that we can fold paper to produce a regular

s-gon, using the (m,n) folding procedure and the FAT algorithm, if s has the given form.
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However, from the number-theoretical point of view, there is one feature of our set of

three questions at the end of the Introduction which introduces an irrelevant restriction into

our investigation. This is the special role assigned to the number 2: this role, as is easily

seen, arises because we — very naturally and properly! — confine ourselves to bisecting

angles by paper-folding. However, the arithmetical questions we have raised make perfect

sense — and should not be harder to answer — if we replace 2 by an arbitrary positive

integer t ≥ 2. Thus we look at integers s of the form

s =
tm+n − 1

tn − 1
, for a fixed integer t ≥ 2. (6)

We call such integers t-folding numbers; we usually suppress the t if t = 2.

Next, it is not convenient to have the expression (m+ n) appearing in (2.1); obviously,

we are concerned with integers s of the form

ta − 1

tb − 1
, where a, b are positive integers with a > b, (7)

Thus, to answer Question 1, we must find out when tb − 1 is a factor of ta-1. From our

knowledge of elementary algebra we should be able to say immediately that tb− 1 is a factor

of ta − 1 if b is a factor of a. However, it actually turns out that this sufficient condition is

also necessary, that is, we have the following theorem.

Theorem 0.1. tb − 1 is a factor of ta − 1 if and only if b is a factor of a.

In fact, a fairly easy argument shows that the gcd (greatest common divisor) of tb−1 and

ta− 1 is td− 1 where d = gcd(a, b); and Theorem 2.1 follows quickly from this. Notice that

the answer to the question of whether tb − 1 is a factor of ta − 1 actually does not depend

on the value of t — an immediate justification for broadening the scope of our arithmetical

investigation.

We turn now to Question 2. We will suppose then that we are dealing with an integer s,

where s has the form (2.1). Then we know by Theorem 2.1 that n is a factor of m. Moreover,

the quotient m+n
n

≥ 2. Since, in the form (2.2), b is a factor of a, we prefer to write

b = x, a = xy, x, y positive integers with y ≥ 2. (8)
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y 2′′ − 1

26 67708863

25 33554431

24 16777215

23 8389607

22 4194303

21 2097151

20 1048575

19 524287

18 262143

17 131071

16 65535

15 32767

14 16383

13 8191 22369621

12 4095 5592405

11 2047 1398101

10 1023 349525

9 511 87381 19173961

8 255 21845 2396745

7 127 5461 299593 17895697

6 63 1365 37449 1118481 34636833

5 31 341 4681 69905 1082401 17043521

4 15 85 585 4369 33825 266305 2113665 16843009

3 7 21 73 273 1057 4161 16513 65793 26257 1049601 4196353 16781313 67117057

2 3 5 9 17 33 65 129 257 513 1025 2049 4097 8193 2r + 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
y

x 1 1 3 4 5 6 7 8 9 10 11 12 13 14 ≤ x ≤ 26

Table 1: 2-folding numbers – the number in position (x, y) is
2xy − 1

2x − 1
.
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Thus s has the form (2.2), with a, b given by (2.3). We propose to write s in base t. We

know, of course, that the numerical form for s is then unique. Now it is easy to see that

txy − 1

tx − 1

(t)
= 10 · · · 0

︸ ︷︷ ︸
10 · · · 0
︸ ︷︷ ︸

· · · 10 · · · 0
︸ ︷︷ ︸

1 (9)

where
(t)
= means that the expression to the right is written in base t; where the ’repeating

part’ 10 · · · 0
︸ ︷︷ ︸

consists of 1 followed by (x − 1) zeros; and where there are y 1’s. Table 1

shows some of the values of 2-folding numbers. It may be of interest to you to write some

of these numbers in base 2 just to see how they fit the form of (2.4). We have then, in fact,

answered Questions 2 and 3. For a positive integer s is a t-folding number if and only if it

assumes the form on the right of (2.4) when written in base t and then x, y are determined

by s. But then m and n are determined from x and y by the rule

n = x, m+ n = xy. (10)

Example 2.1 Is 85 a folding number? If so, how do we fold a regular 85-gon? If we

didn’t have Table 1 available we could proceed as follows. First write 85 in base 2 obtaining

85
(2)
= 1010101. Thus x = 2, y = 4, so n = 2, m + n = 8, m = 6. Hence 85 is a folding

number and we may fold a regular 85-gon by the (6, 2) folding procedure, followed by the

FAT algorithm.

Example 2.2 Is 757 a 3-folding number?

Now 757
(3)
= 1001001. Thus x = 3, y = 3, so 757 = 39−1

33−1
.

Example 2.3 Is 13 a folding number?

Now 13
(2)
= 1101 and so is not a folding number (there is no ’repeating part’). It is easy to

see, however, that 13 is a 3-folding number.
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Folding other Polygons

We close this article by discussing one way to fold regular a-gons where the odd number a

is not a folding number; for example (see above, Example 2.3), how might we fold a 13-gon?

The solution we give here is not as pretty as that which will form a principal part of our

next article, but, on the other hand, it is much easier to understand than the method to be

described in the next article.

Once again, however, we work with base t rather than confining ourselves to the case

t = 2 thrown into prominence by our paper- folding procedures. Thus the condition that a

be odd is replaced by the condition that a be prime to t, that is, that gcd(a, t) = 1. We

then claim that, given any x, there exists y such that

a divides
txy − 1

tx − 1
, (11)

indeed, the set of such y is the set of multiples of a basic y0, which we call the x-height of

a. Look at Table 1 (of 2-folding numbers) to understand this terminology.

Our claim is based on the fact that t is prime to a(tx − 1), from which it follows that

there exists a positive integer z0 such that tz − 1 is divisible by a(tx − 1) if and only if z is

a multiple of z0. The argument is then completed by invoking Theorem 2.1 which tells us

that, for tz0−1
tx−1

to be an integer, we must have z0 = xy0 for some y0.

Let h = h(a) be the 1-height (or, more simply, the height) of a. This means that h is

the smallest positive integer such that3 a
∣
∣ t

h
−1

t−1
. It is then not difficult to see that if a

∣
∣ t

xy
−1

tx−1
,

then h|xy. This result leads to the following rather surprising conclusion.

We would have two obvious criteria for choosing the most convenient t-folding number

s = txy−1
tx−1

, such that a|s. The paper folder would like to minimize xy, which we may call the

total number of folds — remember that n = x, m+n = xy. The mathematician would like

to minimize s, so that the process of passing from a regular s-gon to a regular a-gon is as

simple as possible. Now it is by no means obvious that those two criteria lead to the same

choice of s; after all, we can have two folding numbers s1, s2 with s1 > s2 but s1 requires

fewer folds than s2. Thus

s1 =
25 − 1

21 − 1
= 31, s2 =

26 − 1

23 − 1
= 9,

3Here we are using the notation A
∣
∣B to indicate that the integer A divides the integer B.
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so s1 > s2, but an s1-gon requires 5 folds where an s2-gon requires 6 folds.

Remarkably, however, if we confine attention to those t-folding numbers which have a as

a factor, we find the following

Theorem 0.2. If s = txy−1
tx−1

is the smallest t-folding number having a as a factor then

h(a) = xy.

Corollary 0.3. The smallest t-folding number s = txy−1
tx−1

having a as a factor involves the

fewest number of folds, that is, h(a).

From Theorem 3.1 we may immediately deduce a further remarkable result which we

invite our readers to put to the test.

Theorem 0.4. If for some t ≥ 2, t
xy

−1
tx−1

is a factor of tx
′y′

−1
tx

′
−1

, then xy is a factor of x′y′.

The reader will also notice that, while Theorem 3.3 has some bearing on paper-folding,

it is really a purely number-theoretical result.

To test Theorem 3.3, you might take t = 2, look at Table 1, and show first by examples

that 2xy−1
2x−1

is never a factor of 2x
′y′

−1
2x

′
−1

if xy is not a factor of x′y′. Then find some examples

where xy
∣
∣x′y′ and 2xy−1

2x−1

∣
∣
∣
2x

′y′
−1

2x
′
−1

(the interesting examples would not have x = x′). The

ambitious reader might like to look at values of t different from 2, first producing a table

similar to Table 1 for a particular choice of t (say, t = 3).
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