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UNSW SCHOOL MATHEMATICS COMPETITION 1998

SOLUTIONS

JUNIOR DIVISION

1. Let x, y and z be integers. Prove that if 2x + 4y + 5z is a multiple of 17, then so is

3x+ 6y − z.

Solution Write 2x+ 4y + 5z = 17k. Then

3x+ 6y − z = 10(2x+ 4y + 5z)− 17(x+ 2y + 3z) = 17(10k − x− 2y − 3z) ,

which is a multiple of 17.

2. A regular 21–sided polygon is inscribed in a circle. Is it possible to choose five of its

vertices in such a way as to define a pentagon, all of whose sides and diagonals have

different lengths?

Solution Two chords of a circle are of different lengths if and only if the (minor)

arcs on which they stand are of different lengths. Consider 21 points equally spaced

around a circle, and, for convenience, take the unit of length to be the distance between

two adjacent points. Then the possible arc lengths are 1, 2, 3, . . . , 10. A pentagon has

five sides and five diagonals, so it would appear possible that they are all of different

lengths. In fact, if we label the points 0, 1, 2, . . . , 20 then by trial and error we can

choose A = 0, B = 1, C = 4, D = 14, E = 16 and the ten lengths are

AB = 1 , AC = 4 , AD = 7 , AE = 5 , BC = 3 ,

BD = 8 , BE = 6 , CD = 10 , CE = 9 , DE = 2 ,

which are indeed all different.
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3. A meeting has n invited delegates, Mr. Smith being one of them. At the meeting

there is also a journalist who wishes to interview Mr. Smith. The journalist is aware

that nobody at the meeting knows Mr. Smith, but Mr. Smith knows everybody. The

journalist is allowed to go up to any of the delegates, point to any other delegate, and

ask, “Do you know that person?” What is the minimum number of such questions the

journalist must ask in order to be sure of identifying Mr. Smith? Prove your answer.

Solution Suppose that the journalist points to a person B and asks person A, “Do

you know that person?” Then

• if the answer is “Yes,” then B is not Mr. Smith (for nobody knows Mr. Smith),

but the journalist cannot tell whether or not A is Mr. Smith;

• if the answer is “No,” then A is not Mr. Smith (because Mr. Smith knows every-

body), but B remains unknown.

Therefore every question, whatever the answer, serves to eliminate one person. The

journalist can thus identify Mr. Smith with n− 1 questions, but cannot possibly (even

if he is lucky!) do so with fewer.

4. Let p, q, r and s be real numbers such that p2 + q2 = 1 and r2 + s2 = 1. Prove that

(pr + qs)2 ≤ 1 .

Solution Since p2 + q2 = 1 and r2 + s2 = 1, there exist angles α and β such that

p = cosα , q = sinα , r = cos β and s = sin β .

Therefore

(pr + qs)2 = (cosα cos β + sinα sin β)2 = cos2(α− β) ≤ 1 .
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5. Let

x =
1

1998
+

1

19998
+

1

199998
+ · · · .

If 2x is written as a decimal, find the 17th digit after the decimal point; also, find the

59th digit after the decimal point.

Solution We have

2
1998

= 1
999

= 0.001001001001001001 · · ·
2

19998
= 1

9999
= 0.000100010001000100 · · ·

2
199998

= 1
99999

= 0.000010000100001000 · · ·

and so forth; and 2x is the sum of all these decimals. Let s1 be the sum of the digits in

the first place after the decimal point in all these numbers, s2 the sum of the digits in

the second place, and so on. Then since the first decimal has a 1 in every third place,

the next has a 1 in every fourth, and so on, we see that sk is equal to the number of

factors of k, other than 1 and 2. Therefore s17 = 1. However, we can not yet deduce

that this is the 17th digit of 2x, as there may be a “carry” from places further to the

right. The total in the 18th place, including all carries, is

t18 = s18 +
s19
10

+
s20
102

+
s21
103

+ · · · .

We can make the estimates

s19 < 19 , s20 < 20 < 2× 19 , s21 < 21 < 22 × 19 , . . . ;

calculating s18 = 4 and summing a geometric series, we find that

t18 < 4 +

(

19

10
+

2× 19

102
+

22 × 19

103
+ · · ·

)

= 4 +
19

10

(

1 +
1

5
+

1

52
+ · · ·

)

=
51

8
.

This is less than 10, and so there is no carry into the 17th place. Therefore the 17th

digit of 2x after the decimal point is indeed 1.
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Similarly we have s59 = 1, s60 = 10 and

t60 = s60 +
s61
10

+
s62
102

+
s63
103

+ · · ·

< 10 +
61

10
+

62

102
+

63

103
+ · · ·

< 10 +
61

10
+

2× 61

102
+

22 × 61

103
+ · · ·

= 10 +
61

10

(

1 +
1

5
+

1

52
+ · · ·

)

= 10 +
61

8
.

So 10 < t60 < 20, and therefore there is a carry of 1 into the 59th place. Hence, the

59th digit after the decimal point is 2.

6. Simplify
23 − 1

23 + 1

33 − 1

33 + 1

43 − 1

43 + 1
· · · n

3 − 1

n3 + 1
.

Solution We have

k3 − 1 = (k − 1)(k2 + k + 1) and k3 + 1 = (k + 1)(k2 − k + 1) ;

hence

k3 − 1 = (k − 1)(k(k + 1) + 1) and k3 + 1 = (k + 1)((k − 1)k + 1) .

Therefore the numerator of the given product contains the factors 1, 2, 3, . . . , n−1 and

the denominator contains 3, 4, 5, . . . , n + 1. Most of these cancel and we are left with

2/n(n+ 1). The numerator also contains factors 2×3 + 1, 3×4 + 1, . . . , n(n+ 1) + 1,

and the denominator 1×2+ 1, 2×3+ 1, . . . , (n− 1)n+1; again most cancel and there

remains (n(n+ 1) + 1)/(1×2 + 1). Combining all these results gives

23 − 1

23 + 1

33 − 1

33 + 1

43 − 1

43 + 1
· · · n

3 − 1

n3 + 1
=

2

n(n+ 1)

n(n+ 1) + 1

1×2 + 1
=

2

3

n2 + n+ 1

n2 + n
.
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SENIOR DIVISION

1. In a triangle with sides a, b, c the angle opposite a is twice the angle opposite b. Prove

that a2 = b(b+ c).

Solution Extend CA to D such that AD = AB, and draw the bisector of angle A,

meeting BC at M . Since ∠CAB is twice ∠CBA we can mark angles as shown, and we

see that △AMB is isosceles. Looking at exterior angles of triangles ACB and MCA

we have

∠DAB = ∠ACB + ∠CBA and ∠BMA = ∠MCA+ ∠CAM .

But ∠ACB and ∠MCA are the same angle, and by construction ∠CBA is the same size

as ∠CAM . Therefore ∠DAB = ∠BMA; and since △DAB and △BMA are isosceles,

they are similar. Hence △BDC is similar to △ABC, because ∠BDC = ∠ABC and

∠C is common to both triangles. It follows that

BC

CD
=

AC

CB
, that is ,

a

b+ c
=

b

a
,

and so a2 = b(b+ c).

Alternative solution. Let ∠B = β, as above. Then ∠A = 2β and ∠C = π− 3β. Since

sin(π − θ) = sin θ we can apply the sine rule to give

a

sin 2β
=

b

sin β
=

c

sin 3β
.
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Denote each of these three equal ratios by R. Then by using a “sums-to-products”

formula and the double-angle formula for sine we have

a2 − b(b+ c) = R2
(

sin2 2β − (sin β)(sin β + sin 3β)
)

= R2
(

sin2 2β − (sin β)(2 sin 2β cos β)
)

= R2 sin 2β(sin 2β − 2 sin β cos β)

= 0.

Alternative solution. By the cosine rule

2ac cos β = a2 + c2 − b2 , (∗)

and from the sine rule

a sin β = b sin 2β .

Using the double-angle formula for sine and cancelling sin β (which cannot be zero) we

have

a = 2b cos β .

Now multiply both sides by ac and substitute from (∗) to get

a2c = 2bac cos β = b(a2 + c2 − b2) ;

collecting all the a2 terms on the left hand side and factorising both sides gives

a2(c− b) = b(c2 − b2) = b(c− b)(b+ c) .

Now if b 6= c then we can cancel c − b to give the required result; while if b = c then

△ABC is a right-angled isosceles triangle and we have a2 = 2b2 = b(b+ c) once again.

2. See Junior Division, question 3.

3. Find all positive numbers x and y such that

xx+y = yx+2y and x2x+y = yx+4y .
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Solution Raise both sides of the first equation to the power x + 4y, and both sides

of the second to the power x+ 2y. Then we have

x(x+y)(x+4y) = y(x+2y)(x+4y) and x(2x+y)(x+2y) = y(x+4y)(x+2y) ,

and hence

x(x+y)(x+4y) = x(2x+y)(x+2y) .

Since x and y are not zero there are now two possibilities: either x = 1 or the exponents

on the left and right hand sides are equal. If x = 1 it is easy to see that y = 1.

Otherwise,

(x+ y)(x+ 4y) = (2x+ y)(x+ 2y) ⇒ x2 = 2y2 ⇒ x =
√
2 y .

Substituting back into the first of the given equations,

x(1+
√

2)y = y
√

2 (1+
√

2)y

and so x = y
√

2. Hence we have

y
√

2 =
√
2 y ⇒ y

√

2−1 =
√
2 ⇒ y =

√
2
1/(

√

2−1)
=

√
2
√

2+1

and x =
√
2 y =

√
2
√

2+2
. So the equations have two solutions,

x = 1 , y = 1 and x =
√
2
√

2+2
, y =

√
2
√

2+1
.

4. If k is a positive integer then k! denotes the product of all positive integers up to k:

for example, 5! = 1× 2× 3× 4× 5 = 120.

Show that if m and n are positive integers then (mn)! ≥ (m!)n(n!)m.

Solution Splitting the products into blocks of m factors we find that

(mn)! =
(

1× 2× · · · ×m
)

×
(

(m+ 1)× (m+ 2)× · · · × 2m
)

×
(

(2m+ 1)× (2m+ 2)× · · · × 3m
)

× · · ·

×
(

((n− 1)m+ 1)× ((n− 1)m+ 2)× · · · × nm
)
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≥ (1× 2× · · · ×m)× (2× 4× · · · × 2m)

× (3× 6× · · · × 3m)× · · · × (n× 2n× · · · ×mn)

= m!× (2m ×m!)× (3m ×m!)× · · · × (nm ×m!)

= m!×m!×m!× · · · ×m!× (1× 2× 3× · · · × n)m

= (m!)n(n!)m .

5. See question 5 in the Junior Division.

6. A circle on diameter AB is given, together with a point P inside the circle but not

on AB. Show how to construct, using only an unmarked ruler, a line through P

perpendicular to AB. Prove that your construction succeeds.

Solution Draw a chord through A and P , intersecting the circle again at M , and a

chord through B and P , intersecting the circle again at N . Let X be the intersection

of the lines AN and BM . Since the angle in a semicircle is a right angle, AM and

BN are altitudes of △ABX. But the three altitudes of a triangle are concurrent, and

so PX (extended) is the third altitude of △ABX. Therefore PX is perpendicular to

AB.
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