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FOLDING REGULAR POLYGONS ANDHOW IT LEADS

TO A THEOREM ABOUT NUMBERS

by

Peter Hilton1 and Jean Pedersen2

Introduction

In our paper [1] we showed how to fold a regular 7-gon — and much else besides! We showed

which convex polygons could be folded by a period-2 folding procedure — these turned out

to be those polygons whose number of sides, s, had the form

s =
2m+n − 1

2n − 1
(1)

and the procedure is then the (m,n)-folding procedure. However, 1 is not, in general, an

integer; indeed the condition for it to be an integer is precisely that n|m. What happens3

if n 6 |m? Then s is some reduced fraction b

a
and the procedure described in [1] based on

the (m,n)-folding procedure and the FAT algorithm produces what we call the regular star

{ b

a
}-gon, that is, a connected sequence of edges that visits every ath vertex of a regular

convex b-gon (see Figure 1). We may then regard the regular N -gon as a regular star

{N

1
}-gon.

It turns out that we can only fold a regular star { b

a
}-gon by a period-2 procedure if we

can fold a regular b-gon by a period-2 procedure — this follows from the result quoted in

[1] that the gcd of tA − 1 and tB − 1 is tD − 1 where D = gcd(A,B). Thus the question

remains of how to fold a regular star { b

a
}-gon if b is not a folding number. We will answer
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this question in Section 2 if a is odd. If a is even, there is an additional secondary procedure

required; for details see [2]. (Of course, if b

a
is the reduced form of 1 then b and a are both

odd.) But note that, in any case, we may always assume a < b

2
, since a star { b

b−a
}-gon is

just a star { b

a
}-gon described backwards!
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By executing the Fat algorithm on the bottom edge of the (2, 1)-tape instead of the

top, and at every other vertex (as indicated by the arrows in Figure 1(a)), you will

obtain Figure 1(b). In Figure 1(b) the top edge of the tape visits every third vertex

of a regular 7-gon. By folding back the excess around each point, as shown by the

arrow in Figure 1(b), you can achieve the { 7
3}-gon shown in Figure 1(c).

Figure 1

We will describe in Section 3 a beautiful theorem of number theory which emerges im-

mediately from the description we give in Section 2 of the general folding procedure. Indeed,
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what is especially pleasing — and highly unusual — is that precisely the same data lead, on

the one hand, to a set of explicit folding instructions for folding certain star polygons and,

on the other hand, to an astonishing result in quite a different part of mathematics, namely,

an algorithm for calculating what is called in number theory the quasi-order mod 2 of an

arbitrary odd integer..

The General Folding Procedure

We will explain this procedure by a careful discussion of a particular but not special case.

Suppose we want to construct a regular star {11
3
}-gon, so that b = 11, a = 3. Writing 11 in

base 2, we have4

11
(2)
= 1011,

so we see that 11 is not a folding number. Thus we know that no period-2 folding procedure

could produce the regular {11
3
}-gon. What should we do?

We proceed as we did when we wished to construct the regular convex 7-gon in [1]— we

adopt our optimistic strategy (which means that we assume we’ve got what we want and,

as we will show, we then actually get an arbitrarily good approximation to what we want!)

Thus we assume we can fold the desired putative angle of 3π
11

at A0 (see Figure 2(a)) and

we adhere to the same principles that we used in constructing the regular 7-gon, namely, we

adopt the following rules:

1. Each new crease line goes in the forward (left to right) direction along the strip of

paper.

2. Each new crease line always bisects the angle between the last crease line and the edge

of the tape from which it emanates.

3. The bisection of angles at any vertex continues until a crease line produces an angle

of the form a′π

b
where a′ is an odd number; then the folding stops at that vertex and

4Here, as in our previous papers, we use
(2)
= to mean that the number on the left, which is expressed

in base ten, is equal to the number on the right, which is expressed in base two. In this case, 1011 means

1 + 2 + 8, that is, 11.
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commences at the intersection point of the last crease line with the opposite edge of

the tape.

Once again the optimistic strategy works; and our procedure results in creased tape

whose angles converge to those shown in Figure 2(b). We could denote this folding procedure

as D1U3D1U1D3U1, interpreted in the obvious way on the tape — that is, the first exponent

“1” refers to the one bisection (producing a line in a downward direction) at the vertices

A6n (for n = 0, 1, 2, · · · ) on the top of the tape; similarly, the “3” refers to the 3 bisections

(producing creases in an upward direction) made at the bottom of the tape through the

vertices A6n+1; etc. However, since the folding procedure is duplicated halfway through,

we can abbreviate the notation and write simply {1, 3, 1}, with the understanding that we

alternately fold from the top and bottom of the tape as described, with the number of

bisections at each vertex running, in order, through the values 1, 3, 1, · · · . We call this a

primary folding procedure of period 3 or a period-3 folding.
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The (1, 3, 1)-tape for folding a
{

11
3

}

-gon

Figure 2

A proof of convergence for the general folding procedure of arbitrary period may be given

that is similar to the one we gave for folding the regular 7-gon in [1]. We leave the details
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of the proof to the reader, and explore here what we can do with this (1, 3, 1)-tape. First,

note that, starting with the putative angle 3π
11

at the top of the tape, we produce a putative

angle of π

11
at the bottom of the tape, then a putative angle of 5π

11
at the top of the tape, then

a putative angle of 3π
11

at the bottom of the tape, and so on. Hence we see that we could

use this tape to fold a star
{

11
3

}

-gon, a convex 11-gon, and a star
{

11
5

}

-gon. More still is

true; for, as we see, if there are crease lines enabling us to fold a star
{

11
a

}

-gon, there will

be crease lines enabling us to fold star
{

11
2ka

}

-gons, where k ≥ 0 takes any value such that

2k+1a < 11. These features, described here for b = 11, would be found with any odd number

b. However, this tape has a special symmetry as a consequence of its odd period; namely,

if it is “flipped“ about the horizontal line half way between its parallel edges, the result is

a translate of the original tape. As a practical matter this special symmetry of the tape

means that we can use either the top edge or the bottom edge of the tape to construct our

polygons. On tapes with an even period the top edge and the bottom edge of the tape are

not translates of each other (under the horizontal flip), which simply means that care must

be taken in choosing the edge of the tape used to construct a specific polygon. Figures 3(a),

3(b) show the completed
{

11
3

}

-,
{

11
4

}

-gons, respectively.

(a)

The FAT
{

11
13

}

-gon

(b)

The FAT
{

11
4

}

-gon

Figure 3
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Now, to set the scene for the number theory of Section 3, let us look at the patterns in

the arithmetic of the computations when a = 3 and b = 11. Referring to Figure 2(b) we

observe that5

the smallest angle to the is of the form and the number of bisections

right of An where a

11
π where at the next vertex is k where

n = 0 a = 3 k = 3

1 1 1

2 5 1

3 3 3

4 1 1

5 5 1

We could write this in shorthand form as follows:

(b =)11
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(a =)3 1 5

(k =)3 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2)

Observe that, had we started with the putative angle of π

11
, then the symbol (2) would

have taken the form

(b =)11∣
∣

∣

∣

∣

∣

∣

∣

∣

(a =)1 5 3

(k =)1 1 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3)

In this case we wouldn’t have had to go through all that arithmetic again — we would simply

carry out a cyclic permutation of the columns of (2). However, it is now useful to look at

the more general form taken by (2) and (3). In general we have a symbol

b∣
∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 · · · ar

k1 k2 · · · kr

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4)

where b is odd, each ai is odd, relatively prime to b, and less than b

2
; and

b− ai = 2kiai+1 (5)

5Referring to Figure 2(b), notice that, to obtain an angle of 3π
11 at A0, A6, A12, · · ·,the folding instructions

would more precisely be U3D1U1D3U1D1 · ··. But we don’t have to worry about this distinction.
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Moreover, there are no repeats of the ai’s (so that ar+1 = a1).

We call r the period (of the paper-folding instructions) and, for convenience in the

number theory we are about to explain in Section 3, we set

K = k1 + k2 + · · ·+ kr (6)

We will now describe the arithmetical procedure for obtaining (3) without actually referring

to the tape. Start with b = 11 and a1 = 1 (this will, in fact, uniquely determine the

completed symbol) and write

11∣
∣

∣

∣

∣

∣

∣

∣

∣

1

Now we compute: 11 − 1 = 10, 10
2
= 5 (and STOP, because 5 is odd), and we observe that

this tells us that, in this instance, (5) takes the form 11− 1 = 215, so we record k1, which is

1, and a2, which is 5, to get

11∣
∣

∣

∣

∣

∣

∣

∣

∣

1 5

1

Again we compute: 11−5 = 6, 6
2
= 3 (and STOP, because 3 is odd), so that, in this instance,

(5) takes the form 11− 5 = 213, so we record k2, which is 1, and a3, which is 3, to get

11∣
∣

∣

∣

∣

∣

∣

∣

∣

1 5 3

1 1

Repeating the process, we compute 11 − 3 = 8, 8
2
= 4, 4

2
= 2, 2

2
= 1 (and STOP, because 1

is odd), so that, in this instance, (5) takes the form 11− 3 = 231, so we record k3, which is

3; and, since a4, which is 1, is the same as a1 we STOP without recording a4, and draw the

last vertical line to indicate that the symbol is now finished. Notice that the constructed

symbol is precisely

11∣
∣

∣

∣

∣

∣

∣

∣

∣

1 5 3

1 1 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7)

which is, of course, just (3).
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The numbers in the bottom row of (7), when attached as superscripts to the sequence

DUDUDU..., tell us precisely how to crease tape which can be used to fold the regular

11-gon (and, in fact, the regular {11
2
}- and {11

4
}-gons). Furthermore, we can see that tape

with the same crease lines can also be used to fold regular star {11
3
}- and {11

5
}-gons.

Thus we regard (4) as encoding the general folding procedure to which we have referred.

The symbol (4) tells us exactly how to fold a regular star { b

ai
}-gon for i = 1, 2, · · ·, r.

Notice that there may be star { b

a
}-gons, with a odd, not included among the { b

ai
}-gons

above. For example, we have the symbol

17∣
∣

∣

∣

∣

∣

∣

∣

∣

1

4

∣

∣

∣

∣

∣

∣

∣

∣

∣

telling us how to fold a regular convex 17-gon (by the D4U4-procedure); but this does not

tell us how to fold the regular star {17
3
}-gon. For that information we require the symbol

obtained by using b = 17 and a1 = 3. Constructing this symbol, as above, we obtain

17∣
∣

∣

∣

∣

∣

∣

∣

∣

3 7 5

1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

This completes the information needed to fold any {17
a
}-gon with a odd, less than 17

2
, and

prime to 17. We write

17∣
∣

∣

∣

∣

∣

∣

∣

∣

1
∣

∣

∣
3 7 5

4
∣

∣

∣
1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

and call this the complete symbol for b = 17. Before reading the next section you might

like to write down the complete symbols for b = 43, 51, 85. Look for patterns! (The complete

symbols are given at the end of our article. Remember that, in symbol (4), b and ai must

be relatively prime.)

The Quasi-order Theorem

We now have a bonus! The information in the symbol (2) (or (3)) actually tells us the

smallest number K such that either 2K +1 or 2K − 1 will be exactly divisible by 11. In fact,
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in our particular example, we see, from (6), that K = 5 and the symbol tells us, since r = 3,

that 25 − (−1)3, that is, 25 +1, is exactly divisible by 11 — and that for no power ℓ of 2 less

than the fifth can either 2ℓ +1 or 2ℓ − 1 be divisible by 11. This is because for the entries in

the symbol (4), generated as described, for given b and any suitable a1, it is always the case

that

2K − (−1)r is exactly divisible by b;

and that there is no smaller power ℓ of 2 such that 2ℓ + 1 or 2ℓ − 1 is divisible by b. We call

K the quasi-order of 2 mod b and refer to the result as the Quasi-order Theorem.

The Quasi-order Theorem explains the patterns that you may have found in the complete

symbols for 43, 51, 85. Of course, to deduce the quasi-order of 2 mod b for any odd number

b, it suffices to extract any symbol (i.e., with a given a1) from the complete symbol. What

are the quasi-orders of 2 mod 43, of 2 mod 51, of 2 mod 85? You will find the answers with

the complete symbols at the end of our article.

Here is a particularly interesting example of the Quasi-order Theorem — we’ll explain

why. Choose b = 641, and a1 = 1 and construct the symbol. Try constructing the symbol

for yourself before you look carefully at it, to give you some practice with the algorithm

involving the repeated use of (5).

641∣
∣

∣

∣

∣

∣

∣

∣

∣

1 5 159 241 25 77 141 125 129

7 2 1 4 3 2 2 2 9

∣

∣

∣

∣

∣

∣

∣

∣

∣

We can now calculate that K = 7 + 2 + 1 + 4 + 3 + 2 + 2 + 2 + 9 = 32, and observe

that r = 9, so that the Quasi-order Theorem tells us that

232 − (−1)9 = 232 + 1 is exactly divisible by 641!

We have just proved that the fifth Fermat number 22
5

+1 is not prime. This fact was originally

discovered by Leonhard Euler, and was the first demonstration that not all Fermat numbers

(see [1]) are prime.

If you feel you are now ready for a proof of the Quasi-order Theorem and for further ideas

in the same direction, along with some interesting questions that you could think about, you

should consult the references [2, 3].
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Some Complete Symbols

43∣
∣

∣

∣

∣

∣

∣

∣

∣

1 21 11
∣

∣

∣
3 5 19

∣

∣

∣
7 9 17 13 15

1 1 5
∣

∣

∣
3 1 3

∣

∣

∣
2 1 1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

51∣
∣

∣

∣

∣

∣

∣

∣

∣

1 25 13 19
∣

∣

∣
5 23 7 11

1 1 1 5
∣

∣

∣
1 2 2 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

85∣
∣

∣

∣

∣

∣

∣

∣

∣

1 21
∣

∣

∣
3 41 11 37

∣

∣

∣
7 39 23 31 27 29

∣

∣

∣
9 19 33 13

2 6
∣

∣

∣
1 2 1 4

∣

∣

∣
1 1 1 1 1 3

∣

∣

∣
2 1 2 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

The quasi-order of 2 mod 43 is 7; the quasi-order of 2 mod 51 is 8; the quasi-order of

2 mod 85 is 8. In fact, 43
∣

∣27 + 1, 51
∣

∣28 − 1, 85
∣

∣28 − 1.
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