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SURFING BRACHISTOCHRONES

by

Bruce Henry and Simon Watt1

One of the most famous problems in the history of dynamics is the brachistochrone

problem. The problem is to find the shape of the curve that a particle should follow if

it is to slide without friction in the minimum time from a higher point to a lower point

(not directly beneath it) under the influence of a uniform gravitational field. This problem

was invented as a mind-game for mathematicians by Johann Bernoulli in 1696: “I, Johann

Bernoulli, greet the most clever mathematicians in the world... If someone communicates to

me the solution of the proposed problem, I shall the publicly declare him worthy of praise”.

The problem immediately grabbed the attention of the big guns. Correct solutions were

obtained independently by Newton, Leibniz, L’Hopital, Johann Bernoulli and his brother

Jakob. Newton published his solution anonymously, but Johann Bernoulli recognized it as

the master’s work, “Ah, I know the lion by his paw”2.

In the calculations below we examine two surfing manoeuvres involving brachistochrones.

The first calculation presented shows the fastest path to go down the face of a wave and then

to turn back up for a possible re-entry from the peel and the second shows the fastest path

for tucking into a barrel. Simple conditions are obtained, in terms of the physical parameters

describing the wave, under which it is possible to execute each of these manoeuvres.

1Bruce and Simon are members of the Nonlinear Dynamics Group in Applied Mathematics at UNSW.

Their research collaborations usually concern the dynamics and statistical mechanics of fractal pattern

formation. Here they take time out to go surfing. A special thank you to Mick (Teacher/surfer/poet-Lennox

and elsewhere) for his feed back.
2Excellent sources of information about the lives and achievements of mathematicians are; Dictionary

of Scientific Biography edited by C.C. Gillespie (New York: Scribner’s, 1971); the MacTutor History of

Mathematics WEB site: http://www-history.mcs.st-and.ac.uk/history/
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The sorts of waves that surfers tend to ride are generally classified either as; spilling waves

in which turbulent water appears at the wave crest and spills down the face or plunging waves

(also referred to as barrels) in which the face of the wave steepens until it is vertical and then

the crest plunges over and splashes into the base. The analysis here is for waves that are

steep enough so that surfers can slide down the face but shallow enough so that the surfable

region of the face is essentially planar. We have ignored the motion of the wave itself so that

the surfer’s motion on the wave is simply regarded as motion under the action of a uniform

gravitational field. We have also ignored drag forces so that the surfer’s motion is regarded

as that of a frictionless point particle.

Physical parameters describing surfing waves are; the height H (immediately before

breaking) which is the vertical distance from the crest to the trough; the speed vW at which

the wave advances towards shore; an angle α indicating the slope of the wave face (α = 90◦

is a vertical face); the peel velocity vP oriented parallel along the wave crest which is the

velocity of the junction between the breaking and non-breaking regions of the wave; and the

peel angle β defined by

tan β =
vP
vW

. (1)

To catch a wave a surfer paddles ahead of the wave in the direction of the wave advance.

The wave then comes up behind the surfer and tilts the surfboard down the wave face so

that it starts to slide. The surfer catches the wave when the forward component of their

velocity due to the combined paddling and gravitational sliding is equal to the wave speed.

In each of the calculations below it is assumed that the surfer has caught the wave at an

initial time t = 0 and an initial position A just ahead of the peel and then the surfer slides

from rest with respect to the wave.

Problem 1

In this first problem the surfer attempts to slide down the face of the wave, execute a bottom

turn and then carve back up the face to enable a re-entry just ahead of the advancing peel

in the fastest time possible 3.

The path is shown schematically as a dashed line in figure 1. The x, y co-ordinates

3WEB surf to http://www.msp.com.au/tracks/sequence.html (editorial note, February 2014: this is a

dead link) and click on August 1998
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identify a co-moving frame of reference advancing toward shore with the wave. The x co-

ordinate measures the distance down the face of the wave and the y co-ordinate measures

the distance along the face of the wave in the direction of the advancing peel.
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Figure 1: Schematic illustration of a surfer’s path (dashed line) for Problem 1.

We now seek the fastest path for the surfer to travel from A to B with the additional

constraint that the surfer regains the peel at position B. This is where we turn to the

brachistocrone problem. The first step in the calculation is to identify the shortest time path

from A to B. Let tS denote the time for the surfer’s trip between points x1 and x2, then

tS =

∫ x2

x1

ds

v
(2)

=

∫ x2

x1

√

1 +
(

dy

dx

)2

vS
dx (3)

where the surfer’s speed vS at position x down the face of the wave can be calculated using

conservation of energy. The gain in kinetic energy of the surfer, 1

2
mv2S, is equal to the loss

of gravitational potential energy, mg′x. Hence

vS =
√

2g′x. (4)

where the gravitational acceleration down the face of the wave, g′, is given by

g′ = g sinα. (5)
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Now substitute Eqs.(4), (5) into Eq.(3) and the problem is to find the ‘fall-line’ y(x) that

minimizes

tS =

∫ x2

x1

√

1 +
(

dy

dx

)2

2xg sinα
dx. (6)

The resulting curve is the brachistocrone. We do not enter into the details of this calculation

here, which involves methods from the calculus of variations, but simply quote the result

found by the masters more than three hundred years ago. The resulting path, a cycloid4, is

defined by

x = a(1− cos θ) (7)

y = a(θ − sin θ) (8)

where the constant a is determined by allowing the cycloid to pass through a specified point.

The cycloid passes through the deepest point on the wave at x = 2a, y = πa, (θ = π) and

returns to the top of the wave at x = 0, y = 2πa, (θ = 2π) (see Figure 2). This identifies the

distance from A to B as 2πa. The time for the peel to advance the distance from A to B is

x=0,y=0 y=2   a

x=2a

    π 

Figure 2: The cycloid represented by Eqs.(7),(8)

thus

tP =
2πa

vP
(9)

The time for the surfer to travel from A to B along the cycloid is

tS = 2

∫

2a

0

√

1 +
(

dy

dx

)2

2xg sinα
dx (10)

4A cycloid is the path traced out by a point on the perimeter of a circle that rolls along a straight line.
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Using Eqs.(7),(8) we have, dx = a sin θdθ and

dy

dx
=

dy

dθ
/
dx

dθ
(11)

=
1− cos θ

sin θ
(12)

so that

tS = 2

∫ π

0

√

1 +
(

1−cos θ
sin θ

)2

2a(1− cos θ)g sinα
a sin θdθ (13)

= 2π

√

a

g sinα
. (14)

The manoeuvre can thus be executed if the shortest time for the surfer to travel from A

to B, Eq.(14), is less than the time for the peel to advance from A to B, Eq.(9). We thus

require

a >
v2b

g sinα
. (15)

The following observations can be made regarding this manoeuvre:

1. The wave height, H, is from simple trigonometry related to a via H = 2a sinα. Hence

if the height is less than the critical height

H∗ = 2
v2P
g
, (16)

then the surfer will not be able to regain the peel by following the cycloid and the

manoeuvre will not be possible.

2. The faster the wave is peeling, the deeper the surfer needs to go down the wave face

before doing a bottom turn to regain the peel.

3. The steeper the wave, the less distance down the wave face the surfer should go before

turning back up towards the peel.

As an aside, the surfer’s average speed along the cycloid is,

vS =
2

tS

∫

2a

0

√

1 +

(

dy

dx

)2

dx. (17)
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Again carrying out the integral along the cycloid, we have

vS =
1

2π

√

g sinα

a
2a

∫ π

0

√
2− 2 cos θdθ (18)

=
4

π

√

ga sinα. (19)

The integral was simplified using the identity 1 − cos θ = 2 sin2 θ
2
. This can be compared

with the speed of the peel

vP =
2πa

tS
(20)

=
√

ga sinα (21)

Hence the surfer has a faster average speed (by about 27%) by following the cycloid then

would be obtained by staying with the peel (if the latter were possible).

Problem 2

In this second problem the surfer takes off from rest (with respect to the wave) at position A

and time t = 0 and follows a path until the surfer’s horizontal speed is vS = vP in a direction

parallel to the crest5. From this point on, the surfer continues parallel to the crest. We

seek the fastest path for the surfer to achieve this manoeuvre. The manoeuvre is illustrated

schematically in Figure 3.

The condition that vS = vP requires that the surfer travels a vertical distance

xS =
v2P

2g sinα
(22)

down the face of the wave. This is found by equating the change in gravitational potential

energy from the top of the path, mxSg sinα with the increase in kinetic energy from rest to

1

2
mv2P . This manoeuvre will not be possible if the wave height is less than the critical height

H∗ =
v2P
4g

. (23)

The above equation, Eq.(23), might quite generally be thought of as the condition for a

close-out. The fastest path to move from the top of the wave to a point located a vertical

5WEB surf to http://www.msp.com.au/tracks/sequence.html (Editorial note, February 2014: this is a

dead link) and click on May 1998

6



S

α

y

A

B

x
direction of the shore

wave peel

H

vW

vP

surfer

vS
x

Figure 3: Schematic illustration of a surfer’s path (dashed line) for Problem 2.

distance xS from the top is the straight line free fall path, however this would require a

90◦ turn at the bottom of the drop to keep up with the advancing peel and complete the

manoeuvre. The fastest path in general (which allows for horizontal displacement) is the

cycloid which starts at A and intersects the line at x = xS which is parallel to the wave

crest. The fastest smooth ride that doesn’t require any change in direction at the bottom of

the drop is the cycloid passing through xS = 2a, yS = πa. Suppose that the surfer follows

this particular cycloid then the time for the surfer to travel to the bottom of the cycloid is

tS = π

√

a

g sinα
(24)

It is easy to show that in this manoeuvre the surfer arrives at the bottom of the cycloid

before the wave break. The time for the break to arrive at the bottom of the cycloid is the

time for the peel to travel a horizontal distance πa plus the time for the break at πa to fall

a vertical distance 2a. Hence

tP =
πa

vP
+

√

4a

g sinα
. (25)

The second term in the above equation was found by integrating

dx

dt
=

√

2xg sinα (26)
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from x = 0 to x = 2a and then solving for t. Comparing Eqs.(24), (25) we find

tP =
πa

vP
+

2tS
π

(27)

so that the surfer is ahead of the break. In very steep plunging waves a slower path to the

line x = xS could result in a tube ride where the surfer is totally covered up by the wave.

The critical conditions for; i) a slide into a bottom turn allowing a re-entry off the peel,

Eq.(16), and ii) a slide into a barrel ride parallel to the crest, Eq.(23), can be related to

other physical parameters through empirical relations for typical surfing waves 6. Typical

surfing waves break at a height H = 3

4
D where D is the depth of the ocean at that location.

The typical wave speed of surfing waves is vW =
√
gD where g and D are measured in feet

per second squared and feet respectively. (Wave heights measured in feet seems to be the

surfing standard.) Hence

vw ≈ 1.15
√

gH. (28)

Spilling waves typically have steepness α ≈ 30 − 45◦ whereas plunging waves have α ≈

45−90◦. The peel angle might vary from 35−80◦ in both types of waves. Intermediate level

surfing waves range from about 4 to 10 feet.

The above calculations showed two brachistocrone surfing manoeuvres. The first ma-

noeuvre, the fastest path involving a bottom turn with a possible re-entry off the peel, is

well suited to a spilling wave with a low peel speed. The second manoeuvre, the fastest path

to tuck into the wall of a wave, might be ideal for making a ride on a steep wave with a

high peel speed. Both of these manoeuvres are of course highly idealized. They assume a

planar wave face rather than a rounded wave face, they neglect the effects of wave surge, they

neglect the effects of drag, and they assume surfers are point particles which they certainly

are not7. One of the most important idealizations is that we have ignored the effect of the

wave motion on the surfer. This motion provides the major difference between the dynamics

of skiing8 and surfing.

6One of the most comprehensive studies of surfing waves is Recreational Surfing Parameters by J.R.

Walker, Technical Report No. 30, University of Hawaii - Look Lab - 73 -30 (1974).
7Happy 40th Chunky!
8In ski racing, the objective is to minimize the time of descent through a course delineated by poles down

a slope. The optimal path between poles is the brachistocrone. See for example The Physics of Skiing by D.
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Ultimately there is no better calculation of the optimal surfing manoeuvre under actual

physical conditions then the real time solutions of real world surfers. In this connection

it is interesting to note that the manoeuvre described in Problem 1 would require a tight

180◦ turn or snap at the lip if the surfer was to continue on a similar manoeuvre with a

re-entry. This sort of tight turn has only recently (within the last decade), through the

expertise of world champions like Tom Carroll and Kelly Slater, become a feature of modern

surfing9. Finally, in figure 4, we compare Ross Clarke-Jones’ path as he arcs down the face

of a monster wave at Phantom Reef (Surfing Life 1999 Big Wave Annual pp3,4, photo by

Jeff Hornbaker) with a portion of a cycloid (shown as a solid line). A solution worthy of

praise.

Lind and S.P. Sanders (New York: Springer Verlag, 1996).
9See for example the description of the snap manoeuvre by Kalani Robb in Surfer Vol.38 No.4 (1997)

p50.
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Figure 4: Ross Clarke-Jones’ solving Bernoulli’s brachistochrone problem.
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