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FERMAT’S LAST THEOREM

FOR POLYNOMIALS

by Enrico Laeng1

If x, y, and z are three positive integers such that

xn + yn = zn,

and the exponent n is also a positive integer, then n ≤ 2. In other words, if n ≥ 3, the
equation xn + yn = zn does not have positive integer solutions. This is the statement of
“Fermat’s last theorem”, which, despite the name, was only a conjecture until recently,
when AndrewWiles provided a proof, making it a real theorem.
Wiles’ proof was announced to specialists in algebraic geometry during the summer

of 1993, but it had a few gaps. It was completed in September 1994, and now appears
in [5]2. What we want to present in this article is another not so well-known theorem,
apparently due to Liouville in 1879 (see [4, pp. 263–265]). We give a proof due to
R.C. Mason, from the beginning of the 1980’s. (see [2]; S. Lang wrote an article [1]
illustrating other applications of Mason’s ideas). This theorem and Mason’s approach
to it is strictly related to the so-called “abc conjecture” and loosely related to the circle
of ideas that led to Wiles’ success in proving Fermat’s last theorem. It can be presented
in a very elementary way, and it is interesting in itself. The only prerequisites needed
to follow the proof are some high school algebra and the ability to take derivatives of
products and quotients of polynomials.

Let x(t), y(t), and z(t) be three polynomials with real coefficients (t is the indepen-
dent variable, which sometimes we will not write explicitly). The polynomials x(t),
y(t) and z(t) are said to be relatively prime if they do not have any common factors, and
said to be nontrivial if their degree is at least one (polynomials of degree zero are simply
real constants). We have the following result.

1Professor Laeng teaches mathematics at the Milan Polytechnic, in Italy.
This is an edited and slightly revised translation of his article which first appeared in Lettera matematica
25, published by Springer-Verlag Italia S.R.L. in September 1997.
2This proof is very long and complicated, and even university mathematicians have difficulty in

understanding it. It is to be hoped that a simpler version of the proof can be found.
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Theorem 0.1 If x(t), y(t) and z(t) are nontrivial relatively prime polynomials with real coef-
ficients, satisfying Fermat’s equality

x(t)n + y(t)n = z(t)n,

where the exponent n is a positive integer, then n ≤ 2.

An example of a solution when n = 2 is x(t) = 2t, y(t) = 1 − t2 and z(t) = 1 + t2,
since

(2t)2 + (1 − t2)2 = t4 + 2t2 + 1 = (1 + t2)2.

Our statement is about polynomials in one variable, but can be easily extended to
polynomials in two or more variables. Indeed, if there were a solution of Fermat’s
equation where n > 2 with polynomials in several variables, then we could substitute
numerical values for all the variables except one, and obtain a one-variable solution
that would contradict the theorem.
There is no simple procedure known for deducing Fermat’s last theorem from this

theorem. In fact, it is rather unlikely that such a procedure could be found. In spite of
that, the theorem as it stands does give us some information about Fermat’s original
claim. The reason is that, when n = 2, the general formula for the integer solutions
of Fermat’s equation can be expressed using polynomials: if there were any integer
solutions of Fermat’s equation when n > 2, they could not be expressed in terms of
polynomials. There are infinitely many integer solutions of the equation x2 + y2 =
z2; these are called Pythagorean triples, and can be obtained by substituting positive
integers t and u in the following polynomials

x(t, u) = t2 − u2;

y(t, u) = 2tu;

z(t, u) = t2 + u2.

It is relatively easy to prove that as t and u vary over all possible relatively prime
positive integers, not both odd, then the corresponding values of x, y and z vary over
all the primitive Pythagorean triples, i.e., all those integer solutions of the equation
x2 + y2 = z2 which are essentially different from each other. The set of all solutions
is then obtained by considering also all nonprimitive triples, i.e., integer multiples of
solution triples which have been already found. All this was essentially known to
Diophantus and other Greek mathematicians, who produced Pythagorean triples such
as (3, 4, 5), or (5, 12, 13) or (12, 35, 37).

Let δ(a) be the degree of the polynomial a(t) and let η(a) be the number of distinct
complex roots of the polynomial a(t). For example, if a(t) = t3 − 2t2 + t = t(t − 1)2, then
δ(a) = 3 and η(a) = 2.
Observe that

(i) η(a(t)) ≤ δ(a(t)), since the degree of the polynomial a(t) is the maximum number
of distinct roots that a(t) could have,

(ii) η(a(t)n) = η(a(t)), and
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(iii) δ(a(t).b(t)) = δ(a(t)) + δ(b(t)).

To prove the main theorem we will use the following result.

Lemma 0.2 (Mason’s Lemma) Let a(t), b(t), and c(t) be nontrivial, relatively prime, poly-
nomials such that a + b = c. Then

max{δ(a), δ(b), δ(c)} ≤ η(abc) − 1

Proof of the theorem usingMason’s lemma. Let us assume that the lemma holds and
that x(t), y(t) and z(t) are three relatively prime polynomial of degree at least 1, such
that

x(t)n + y(t)n = z(t)n.

We want to show that n ≤ 2.
Applying the lemma with a = xn, b = yn and c = zn, we get

δ(xn) ≤ max{δ(xn), δ(yn), δ(zn)} ≤ η(xnynzn) − 1

≤ δ(xyz) − 1 = δ(x) + δ(y) + δ(z) − 1,

so, observing that δ(xn) = nδ(x), we have

nδ(x) ≤ δ(x) + δ(y) + δ(z) − 1.

By the same argument we can show that

nδ(y) ≤ δ(x) + δ(y) + δ(z) − 1,

nδ(z) ≤ δ(x) + δ(y) + δ(z) − 1,

and by adding these three inequalities together we obtain

n(δ(x) + δ(y) + δ(z)) ≤ 3(δ(x) + δ(y) + δ(z)) − 3,

and therefore

n ≤ 3 −
3

δ(x) + δ(y) + δ(z)
< 3. ⊓⊔

Proof of Mason’s Lemma. The equation a + b = c, where a, b and c are nontrivial rela-
tively prime polynomials, can also be written as f + g = 1, where f = a/c and g = b/c.
Both f and g are rational functions (ratios of polynomials) and they are reduced (their
numerators and denominators do not have nontrivial common polynomial divisors).
We differentiate the expression f + g = 1 with respect to t, and we obtain f ′ + g′ = 0,
which can also be written in the form

f ′

f
f +

g′

g
g = 0,

and from this last identity we obtain

−
f ′/f

g′/g
=

g

f
=

b

a
. (∗)
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Any rational function r(t) can be written as a product

r(t) = R(t − ρ1)
q1(t − ρ2)

q2 . . . (t − ρI)
qI ,

where R is a suitable constant, the numbers ρ1, . . . , ρI are the I distinct roots of the
numerator and denominator of r(t), and the numbers q1, . . . , qI are the corresponding
multiplicities, given by a positive integer for the roots of the numerator and a negative
integer for the roots of the denominator. For example, if r(t) = (2t2 − 2)/(t2 − 4), then
we represent r(t) by the formula

r(t) = 2(t − 1)(t + 1)(t − 2)−1(t + 2)−1.

Taking the logaritheorem of r and then differentiating with respect to xwe have

r′

r
=

I∑

i=1

qi

t − ρi

=
q1

t − ρ1

+ . . . +
qI

t − ρI

.

Notice that in this last expression the multiplicities have become constants and the
constant R has disappeared completely. We can write the polynomials a, b, and c in the
factorized form

a(t) = A(t − α1)
l1(t − α2)

l2 . . . (t − αL)lL,

b(t) = B(t − β1)
m1(t − β2)

m2 . . . (t − βM)mM ,

c(t) = C(t − γ1)
n1(t − γ2)

n2 . . . (t − γN)nN ,

where the roots and multiplicities appear explicitly. Using formula (∗), we have

b

a
= −

f ′/f

g′/g
= −

∑
li

t−αi
−

∑
nk

t−γk∑ mj

t−βj
−

∑
nk

t−γk

.

Wenowmultiply the numerator and denominator of this expression by the polynomial
h(t), given by the formula

h(t) = (t − α1) . . . (t − αL)(t − β1) . . . (t − βM)(t − γ1) . . . (t − γN),

and we obtain
b

a
= −

hf ′/f

hg′/g
.

Since δ(h) = η(abc), both hf ′/f and hg′/g are polynomials whose degree is at most
η(abc) − 1. Furthermore we are assuming that the polynomials a and b are relatively
prime, and this last equality implies that their degrees δ(a) and δ(b) are at most η(abc)−
1. Since a + b = cwe have δ(c) ≤ η(abc)− 1 as well, and this concludes the proof of the
lemma. ⊓⊔
Another proof of this theorem, together with some further material concerned with

Fermat’s last theorem which is accessible to high school students, is contained in [3,
Chap. 1].
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