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LENGTH AND RELATIVITY

by John Steele1

Time Measurement and Relativity

In a previous issue issue of Parabola (Vol 29 No 2 p.2), I discussed the effect on time
measurement of Einstein’s two postulates of Special Relativity. These two postulates
are:

1. the laws of Physics are the same to any inertial observer and

2. there is an inertial observer for whom light signals in vacuum travel at a constant speed
in all directions whatever the motion of the light source.

An inertial observer is one for whom Newton’s First Law holds: an object on which no
force acts moves in a straight line at constant speed. The speed of light is represented by
the symbol c and is about 2.988× 108 metres per second.

Combining Einstein’s two postulates (in the previous article) leads us to the con-
clusion that, in vacuum, light travels at speed c in all directions at all times according
to all inertial observers (however fast they or the light source are going).

Armed with these two postulates and as much clear thinking as we could muster,
we looked closely at time measurement. We found that a moving clock will run slowly
by a factor called the gamma factor, where for an object moving at speed v

γ = (1− v2/c2)−1/2. (1)

We also dealt with the order of distant events in that article, finding that two events
occurring in different places that are simultaneous to one observer are not necessarily
simultaneous to another, and that the order in which two events occur can also depend
on the observer. In this article we consider how differences in the length measurements
also depend on the gamma factor.

Measuring Length

Suppose we are an inertial observer, and are watching a rocket moving at speed v
metres per second towards us from a distance L metres away. Since distance is speed
× time, the rocket will reach us after L/v seconds. However, time dilation means that
the clocks on the rocket are running slowly, and so if they were reading 0 when the
rocket was L metres away, they are reading L/(vγ) when they reach us.

1John is an associate lecturer in Pure Mathematics at UNSW
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Now the same thing must be observed by anyone on the rocket: from their point
of view we have approached them at speed v, and have taken L/(vγ) seconds to reach
them. It follows that, if relativity is to be consistent, that from their point of view,
we did not start L metres away, but were at a distance of L/γ. In other words, when
moving, distances are shortened by a factor of γ.

Just as in the case of time dilation, this effect is not just an accident of our way of
measuring, it is a real effect. Unfortunately, no experimental verification of this length
contraction has actually been done yet. However we see from the above argument
that time dilation and length contraction must both occur if one does, or we are led to
contradictions, and time dilation has been measured.2

For historical reasons, length contraction is sometimes called FitzGerald-Lorentz
contraction, and James Coleman in Relativity for the Layman quotes the limerick:

There was a young fellow called Fisk
Whose fencing was exceedingly brisk;
So fast was his action
The FitzGerald contraction
Turned his rapier into a disc.

Now that we have the two ideas of time dilation and length contraction, we can
explain how it is (in theory) possible to travel to a distant star, say 200 light years away,
within a human lifetime. Recall that a light year is the distance that light travels in one
year, about 6 million million miles (or 91

2
million million kilometres). As nothing can

travel faster than light, how could we hope to get to such a star from earth within one
lifetime?

Both time dilation and length contraction supply the answer. Suppose that a plucky
astronaut makes the trip at a speed with γ = 4, that is at approximately 96.8% of
the speed of light (about 289 thousand kilometres a second). From the point of view
of the earth (which we take as inertial for the sake of argument), the astronaut takes
206.5 years to make the trip. However, time dilation means that the astronaut only
experiences a quarter of this time span, or 51.64 years.

On the other hand, as far as the astronaut is concerned his clocks are running per-
fectly (the clocks on earth seem slow though), but the distance he has to travel is not
200 light years, but only 50. At 96.8% of the speed of light such a trip will take 51.64
years.

We see that if distances did not contract due to motion, we would be left with no
way to resolve the conflict between the time the astronaut measures he takes for his
trip and the fact that nothing can travel faster then light. If the distance to the star were
not shrunk for the astronaut, then he would have travelled 200 light years in just over
fifty of his years, that is at nearly four times the speed of light (as he measures it). This
is not possible in relativity.

The Pole in the Barn Paradox

2See, for example, “Around-the-World Atomic Clocks: Predicted Relativistic Gains” J.C. Hafele and
R.E. Keating, Nature Vol. 177 (1972) 166-170.
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Now we know about length contraction, we can invent some amusing uses of it.
Suppose you want to fit a 20m pole into a 10m barn. If the pole were moving fast

enough, then length contraction means it would be short enough. For the figures we
have here, we need γ = 2, and that works out at a speed of about 86.6% of the speed of
light, or 259.8 million metres per second.

Now comes the paradox. According to your friend who is going to slam the barn
doors shut just as the end of the pole goes in, the pole is 10m long, and therefore it fits.
However as far as you are concerned, the pole is still 20m long but the barn is now only
5m long: length contraction must work both ways by the first postulate. How can you
fit this 20m pole into a 5m barn? This paradox is apparently due to Wolfgang Rindler
of the University of Texas at Dallas.

Of course the key to this is relativity of simultaneity. Your friend sees the front end
of the pole hit the back wall of the barn at the same time as the doors are closed, but
you (and the pole) do not see things this way. You are standing still and see a 5m long
barn coming towards you at some shockingly high speed. When the back of the barn
hits the front of the pole (and takes the front of the pole with it), the back end of the
pole must still be at rest. It cannot ‘know’ about the crash at the front, because the
shock wave travelling along the pole “telling it” about the crash travels at some finite
speed. The front of the barn has only 15m to go to get to the back of the pole, but the
shock wave has to travel the whole length of the pole, namely 20m. The speed of the
barn is such that even if this shock wave travelled at the speed of light, it would not
get to the back of the pole before the front of the barn did. Hence in both frames of
reference, the pole fits inside the barn (and will presumably shatter when the doors are
closed).

An important point to take from this is that if we get one result from correctly rea-
soning as one observer, then the same result must be true to any other inertial observer:
we may need different reasoning though.

The Magician’s Assistant Paradox

We can use the same principle to resolve another paradox.
The Magician’s Assistant Paradox is the following (which I first had outlined to

me by John Pulham of the University of Aberdeen): A magician is performing a trick
with two guillotines set 160cm apart. Her assistant (who is 2m tall) is sent towards the
guillotines, while lying down on a trolley. This trolley is moving at a fraction over 60%
of the speed of light, so γ is slightly greater than 1.25. The magician drops the blades
so that they fall when the assistant is exactly between the guillotines, which will miss
him as length contraction makes him slightly less than 160cm tall to the magician and
the guillotines. The blades then drop out of the assistant’s way and he continues on
unharmed.

But from the point of view of the assistant, the two blades are rushing towards him
at 60% of the speed of light and, rather than being 160cm apart, are less than 128cm
apart, and are therefore likely to cut him into three pieces.

We can resolve this paradox by explaining exactly what the assistant sees when the
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blades fall. Once again, it is the relativity of simultaneity that saves the assistants neck:
one blade must fall before the other. In fact, we can see that the blade furthest from
him must fall first (just in front of the top of his head), so that he goes over this blade in
both his frame and the magician’s. Then just as his feet pass the second blade, that one
falls, and he goes under this blade in both his frame and the magician’s. If you do the
exact calculations, you find that this is indeed what happens.

Conclusion

What we have been discussing in this article is the effect that motion can have on
length and distance. The mathematics is simple, but the ideas behind what we are
doing are subtle, and in places rather sophisticated. The key point is that when moving,
distances are shrunk. As in the case of time distortion we discussed in the previous
article, this effect is only apparent in comparison to another inertial observer, and is
symmetric.

If you are be interested in relativity, there are many books on the subject: I would
particularly recommend Wolfgang Rindler’s Introduction to Special Relativity. For
those with WWW access, there is a list of frequently asked questions — which includes
a discussion of the Pole in the Barn paradox — kept at

www.phys.unsw.edu.au/physoc/physics_faq/relativity.html3

There are many web sites dealing with Special and General Relativity, but you
should be careful of the large number of alternate theories (one for each alternate the-
orist), as all of those I’ve seen are not worth perusing.

3Editorial note, February 2014. This is a dead link.
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