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IMPOSSIBLE CONSTRUCTIONS 1

It is fairly generally known, even amongst not very advanced students of mathemat-
ics, that in addition to the many ingenious constructions with straight edge and com-
passes which were discovered by the ancient Greeks, there were a number of similar
construction problems which defied all their efforts, and the efforts of later genera-
tions of mathematicians for something like 2000 years, until it was eventually shown
that these constructions were in fact impossible. Examples include the problem of tri-
secting a given angle, and the problem of duplicating a given cube (i.e. given a line
segment AB it is required to construct a line segment CD such that the cube whose
side is CD has exactly twice the volume of the cube whose side is AB). The nature of
the impossibility proof is not nearly as generally known; it is the aim of this article to
outline the ideas of the proof, although some of the algebraic details will have to be
omitted.

In spite of the existence of this proof, from time to time people come forward claim-
ing that they have discovered how to trisect angles. Examination of their attempts usu-
ally shows that they have not grasped the limitations implicit in the Greek notion of
a construction. In particular it is imperative that the construction involve only a finite
number of operations. The only allowable operations consist in drawing the straight
line through two previously constructed (or initially given) points, and drawing the
circle whose centre is a previously constructed point, and whose radius is the distance
between two previously constructed points.

New points are “constructed” if they are points of intersection of two such straight
lines and/or circles.
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Figure 1

1A reprint of an article in Parabola from 1969.
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A necessary ingredient of the discussion is the idea introduced by Descartes into
geometry, namely, that it is useful to specify the position of a point by giving its “coor-
dinates” relative to a pair of intersecting straight lines (axes).

In Figure 1, the straight line OAMx is the “x-axis”, and the straight line Oy at right
angles to Ox is the “y-axis”.

OA is a line segment of unit length. Given any point P, let PM be perpendicular
to Ox. Then the x-coordinate of P is the number, h, of units of length in the “directed”
line segment OM. (The “directed” here means that the coordinate has a plus or minus
sign attached according asM lies to the right or left of O.) Similarly the “y-coordinate”
of P is the number, k, of units of length in the directed line segmentMP. (It is positive
if P lies above the x-axis and negative if P is below the x-axis.) There is a (1 − 1)
correspondence between points of the plane and ordered pairs of real numbers (h, k).

A number h is called a constructible number if (after the unit interval OA is given)
it is possible to construct a line segment of length h units. Clearly the constructible
points in the plane are just those points whose coordinates (h, k) are both constructible
numbers. We seek some characterisation which will enable us to distinguish which
numbers are constructible.

As a first step in this search we observe that if h and k are constructible numbers,

so are h+ k, h− k, hk (Figure 2),
h

k
(k 6= 0) (Figure 3), and

√
h (Figure 4).
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Construct line AE, make |AC| = k.
BX is parallel to CD.

2



AB
D

1

√
h

Figure 4

In figures 3 and 4, |AD| = h.

Let us denote by X the set of all numbers obtainable from 1 by using any finite
sequence of operations of addition, subtraction, multiplication, division or extraction

of square roots. (For example, the number

√

√

2 + 4
√
3 + 5

6− 7/3
belongs to X .)

Then the above observation shows that all numbers in X are constructible.
Conversely, it is not very difficult to show that all constructible numbers are in the

set X . To do this we establish the following lemma.

Lemma 0.1 If after some sequence of constructions all constructed points have both coordi-
nates in the set X , and if a new point P is constructed as the intersection of a pair of lines
and/or circles, then the coordinates of P belong to the set X .

If, to start with, we are given only the unit interval, with end points (0, 0) and (1, 0), the
condition of the lemma is obviously satisfied, and it is clear that we can never construct
any point whose coordinates do not belong to X . We proceed to outline the proof of
the lemma.

Most of our readers will not need to be reminded that associated with any curve
in the Cartesian plane there is an equation involving x and y which is satisfied by the
coordinates (x, y) of a point P if and only if P lies on the curve. Straight lines have
equations of the form

Ax+By + C = 0 (1)

and circles have equations of the form

x2 + y2 + 2Gx+ 2Fy +D = 0. (2)
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Proposition 0.2 (a) Let ℓ be a straight line passing through the points (a, b) and (c, d),
where all of a, b, c and d belong to the set X . Then ℓ has an equation of form (1) in which
A,B and C all belong to X .

(b) Let k be a circle with centre (a, b) and radius r where a, b and r belong to X . Then k has
an equation of the form (2) in which G,F and D all belong to X .

Proof

(a) The equation (d− b)x+ (a− c)y+ (bc− ad) = 0 is of form (1) and is therefore
the equation of a straight line. It is obviously satisfied by x = a, y = b, and
by x = c, y = d, so the line passes through these two points. The coefficients
A = (d− c), B = (a− c), C = (bc− ad) belong to X .

(b) By applying Pythagoras theorem to the triangle CMP in figure 5, we see that
P (x, y) lies on the circle if and only if (x − a)2 + (y − b)2 = r2. This gives an
equation of type (2) with G = −a, F = −b and D = a2 + b2 − r2 which all belong
to X .
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Proposition 0.3 A point of intersection of two lines, a line and a circle, or two circles, having
equations of forms (1) or (2) with all coefficients in X , has coordinates belonging to X .

ProofWe illustrate by taking a line

Ax+By + C = 0 (1)
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and a circle
x2 + y2 + 2Gx+ 2Fy +D = 0 (2)

with all of A,B,C,D, F,G in X .
Solving these simultaneous equations for the coordinates (x, y) of the points of in-

tersection yields

x =
−AC −B2G+ ABF ±

√
∆

A2 + B2

where ∆ = (AC + B2G− ABF )2 − (A2 +B2)(C2 − 2FBC + B2D)), and a similar ex-

pression for y =
C − Ax

B
, which are clearly in X .

We can leave the similar treatment of the other two cases to our readers. It should
also be clear that the lemma is a simple consequence of Propositions 1 and 2.

The numbers in X have another propositionerty which we nowmention. Consider,
for example, the number

x =
√
2 +

√
3 +

√
6 =

√
2 +

√
3 +

√
2 ·

√
3

which is certainly in X .We can remove surds by obtaining in succession

√
2 =

x−
√
3

1 +
√
3

2 =
x2 − 2

√
3x+ 3

1 + 2
√
3 + 3

8− x2 − 3 = −2x
√
3− 4

√
3

√
3 =

x2 − 5

2x+ 4

3 =
x4 − 10x2 + 25

4x2 + 16x+ 16

x4 − 22x2 − 48x− 23 = 0.

This shows that x is a root (or zero) of the polynomial x4 − 22x2 − 48x − 23 whose
coefficients are integers and whose degree is 4, a power of 2.

Investigation reveals that x does not satisfy any such polynomial equation of smaller
degree (with integer coefficients). It is called the minimal polynomial satisfied by x,
and x is called an algebraic number of degree 4. (Note that x satisfies many polyno-
mials of any larger degree obtained simply by multiplying its minimal polynomial by
an arbitrary polynomial. Note also that minimal polynomials cannot be factorised into
factors with integer coefficients. (Why?) Because of this they are called “irreducible
polynomials”.)

The following statement may now seem plausible.

Theorem 0.4 Every number in X is an algebraic number whose degree is a power of 2. That is
each such number is a zero of an irreducible polynomial with integer coefficients whose degree
is a power of 2.
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We shall not prove this result. We draw the immediate inference:

Theorem 0.5 If x satisfies an irreducible polynomial equation with integer coefficients whose
degree is not a power of 2, then x is not a constructible number.

As a particular example, consider x = 3
√
2. The minimal polynomial satisfied by x

is x3 − 2 and it follows from the above theorem that 3
√
2 is not constructible. This

proves the impossibility of duplicating the cube, which requires the construction of a
line segment whose length is 3

√
2 times the given one.

What about trisecting angles? If there were a general method of doing this, since
an angle of 60◦ is very easily constructed we could also construct an angle of 20◦, (see
figure 6, where OA is the given unit interval, OP is also of unit length and ∠AOP =
20◦).
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Figure 6

By elementary trigonometry, the x-coordinate of P would then be

x = |OM | = cos 20◦.

In the trigonometrical identity cos 3θ = 4 cos3 θ − 3 cos θ, put θ equal to 20◦ to obtain

1

2
= 4x3 − 3x

8x3 − 6x− 1 = 0.

It is not difficult to prove that the polynomial on the left is irreducible, and it then
again follows from the theorem above that x is not constructible. Hence there cannot
exist any construction for trisecting angles.
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