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DIFFERENTIATINGTHENON-DIFFERENTIABLE—FRAC-

TIONAL CALCULUS

Laurent Borredon, Bruce Henry and Susan Wearne1

Introduction

Many of you have now learnt how to calculate the first derivative df
dx
for a wide

range of functions such as f(x) = x1/2, f(x) = sin(x), f(x) = 1, etc. You also would

have learnt how to calculate the second derivative, d2f
dx2 , the third derivative,

d3f
dx3 , and

so on. You have even learnt how to calculate negative derivatives in the sense that
d−1f
dx−1 represents one integration of the function with respect to x and d−2f

dx−2 represents
two integrations with respect to x etc. But have you ever wondered about a fractional

derivative? What about d1/2f
dx1/2

or d−1/2f
dx−1/2

or dqf
dxq where q is any number?

Figure 1: The rugged surface of a malignant breast cell nucleus is typical of surfaces
that cannot be properly understood using the ordinary calculus but may be amenable
to studies using fractional calculus. This image, which was obtained by Andrew Ein-
stein, Mount Sinai School of Medicine, appeared in the 1998 Annual Publication of the
American Institute of Physics.

Whether or not you have entertained wonderings about fractional calculus you
may be interested to know that the architects of calculus, Newton and Leibniz, had
already thought about such things right back in the early days of the development of

1Laurent Borredon is currently completing a combined degree in Science/Mathematics and Engi-
neering at the University of Western Australia. He was a vacation scholar working with Dr Bruce Henry
and Dr Susan Wearne in the Nonlinear Dynamics Group in Applied Mathematics at UNSW when this
study was undertaken.
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the ordinary (whole number) calculus. In a letter to L’Hopital in 1695, Leibniz dis-

cussed the meaning of d1/2x
dx1/2

and suggested that the result was “an apparent paradox,
fromwhich one day useful consequences will be drawn.” In the ensuing three hundred
years since then the physical and natural sciences have been filled with applications of
the ordinary calculus but few if any “useful consequences” have been drawn from the
fractional calculus. Recently, however, some interesting new mathematical discoveries
have been made which hold the promise that Leibniz’s prophecy on the fractional cal-
culus will soon be realized.

Definitions and Examples

So what is a fractional derivative or a fractional integral? First we introduce nota-
tion for ordinary differentiation and integration. An n−fold derivative, or differentia-
tion n times is represented by

dnf(x)

dxn
=

d

dx

(

d

dx

(

d

dx
. . .

(

d

dx
f(x)

)))

. (0.1)

Similarly we have an n−fold integral, or integration n times represented by

d−nf(x)

dx−n
=

∫ x

0

(
∫ xn−1

0

. . .

(
∫ x2

0

(
∫ x1

0

f(x0)dx0

)

dx1

)

. . .

)

dxn−1. (0.2)

(This notation suggests that we think of integration as differentiation, but a whole neg-
ative number of times.)
Example
Consider the function f(x) =

√
x.

1.

d2f(x)

dx2
=

d

dx

(

d

dx

(√
x
)

)

=
d

dx

(

1

2

1

x1/2

)

= −
1

4

1

x3/2

2.

d−2f(x)

dx−2
=

∫ x

0

(
∫ x1

0

√
x0dx0

)

dx1

=

∫ x

0

[
2

3
x

3/2
0 ]x1

0 dx1

=
2

3

∫ x

0

x
3/2
1 dx1

= 2[
4

15
x

5/2
1 ]x0

=
4

15
x5/2
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A standard result of multiple integration is that the n−fold integral appearing in equa-
tion (0.2) can equivalently be represented by the single integral

d−nf(x)

dx−n
=

1

Γ(n)

∫ x

0

f(y)

(x − y)−n+1
dy (0.3)

where Γ(n) is a function of n called the gamma function. This function is itself defined
by an integral

Γ(q) =

∫

∞

0

yq−1 exp(−y) dy; q > 0.

Note that this integral exists for both integer and non-integer values for q. (It is easy
to verify that Γ(1) = 1 and not so easy to verify that Γ(1

2
) =

√
π. Moreover using

integration by parts, it is possible to prove that for any real number q,

Γ(q + 1) = qΓ(q)

In particular, if q is an integer then Γ(q + 1) = q!.)
It is beyond the scope of this article to prove the compact formula, Eq. (0.3), for

n−fold integrals, 2 however it is a straightforward exercise to verify that application of
the formula gives the correct results for the n−fold integrals calculated in the examples
above.
Example
Consider the function f(x) =

√
x.

d−2f(x)

dx−2
=

1

Γ(2)

∫ x

0

(x − y)
√

ydy

=

∫ x

0

xy1/2 − y3/2dy

= [
2

3
xy3/2 −

2

5
y5/2]x0

= 2[
4

15
x

5/2
1 ]x0

=
4

15
x5/2

which agrees with the result obtained previously by integrating
√

x twice with respect
to x.
The formula for n−fold integrals in Eq. (0.3) holds the key to defining a fractional

integral. The idea is simply to replace the integer n appearing in Eq. (0.3) by a real
number q. The right hand side of the equation is still well definedwhen n is replaced by
q in this way. Indeed this is precisely the definition of the fractional integral introduced
by Riemann and Liouville.

2The proof is a popular assignment question in undergraduate mathematics courses on multiple
integration.
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Definition - Fractional Integral3

Let q > 0 denote a real number and f a continuous function. The fractional integral
of f of order −q is given by

d−qf(x)

dx−q
=

1

Γ(q)

∫ x

0

f(y)

(x − y)−q+1
dy (0.4)

The fractional derivative is now defined by applying differentiation awhole num-
ber of times to a fractional integral.

Definition - Fractional Derivative
Let q > 0 denote a real number and n the smallest integer exceeding q. The
fractional derivative of f of order q is given by:

dqf(x)

dxq
=

dn

dxn
(
d−(n−q)f(x)

dx−(n−q)
) (0.5)

Example

Consider the fractional derivative d1/2f
dx1/2

of f(x) =
√

x. In this example, q = 1/2, and
n = 1 is the smallest integer exceeding q. Hence

d1/2f

dx1/2
=

d

dx

(

d−1/2f

dx−1/2

)

where, from Eq. (0.4) with q = 1/2,

d−1/2f

dx−1/2
=

1

Γ(1
2
)

∫ x

0

√
y

(x − y)−
1

2
+1

dy

=
1

Γ(1
2
)

∫ x

0

y
√

xy − y2
dy.

To simplify the above integral first complete the square in the denominator, then

d−1/2f

dx−1/2
=

1

Γ(1
2
)

∫ x

0

y
√

x2

4
− (y − x

2
)2

dy.

Now consider the change of variables from y to θ via

y =
x

2
+

x

2
sin θ

dy =
x

2
cos θdθ

y = 0 ⇒ θ = −π/2

y = x ⇒ θ = π/2.

3More generally, in the Riemann-Liouville definition the fractional integral is defined with respect to
a lower non-zero integration limit.
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With this change of variables we can write

d−1/2f

dx−1/2
=

1

Γ(1
2
)

∫ π/2

−π/2

x
2

cos θ
√

x2

4
− x2

4
sin2 θ

(
x

2
+

x

2
sin θ)dθ.

To simplify this integral further use the trigonometric identity

cos2 θ + sin2 θ = 1,

to cancel out the denominator. Then

d−1/2f

dx−1/2
=

1

Γ(1
2
)

∫ π/2

−π/2

(
x

2
+

x

2
sin θ)dθ

=
1

Γ(1
2
)
[
x

2
θ −

x

2
cos θ]

π/2
−π/2

=
πx

2Γ(1
2
)

=

√
πx

2
.

Finally the fractional derivative of
√

x of order one half is

d1/2
√

x

dx1/2
=

d

dx

(

d−1/2
√

x

dx−1/2

)

=
d

dx

(√
πx

2

)

=

√
π

2
.

Applications

There have been two recent mathematical discoveries that have helped to unlock
the power of the fractional derivative. One such discovery is that of fractal functions.
Most of the functions that you are familiar with are smooth. This means that locally
they can be approximated by a straight line segment. For example the function f(x) =
x2 is well approximated by 2x − 1 at the point x = 1 (see figure 2). The derivative of
the function at a particular point provides the slope of the straight line approximation
or tangent to the curve. As a second example consider the sum of six cosine functions,

f(x) =
5

∑

n=0

(
1

2
)n cos(3nx).

This function appears highly irregular near x = 1 in figure 3(a) but under increasing
magnification the function appears smoother and in figure 3(c) we see that it is well
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Figure 2: f(x) = x2 with the tangent at x = 1. This smooth function can be approxi-
mated locally by straight lines.

approximated by a straight line near x = 1. Again the derivative of the function eval-
uated at x = 1,

f ′(1) = −
5

∑

n=0

(
3

2
)n sin(3n) ≈ 5.5,

is the slope of the straight line approximation at this point.
Fractal functions are not smooth. They have details on all scales and they cannot be

approximated locally by straight line segments. An example is theWeierstrass function
which can be written as the infinite sum of cosine functions,

f(x) =

∞
∑

n=0

(
1

2
)n cos(3nx).

For this function we can see (figure 4) that however closely we zoom in on a point, x =
1 say, we continue to find more detail and the slope of the tangent changes orientation
under increasing magnification.
Functions such as the Weierstrass function cannot be differentiated (a whole num-

ber of times). But it turns out that these fractal functions can be differentiated a frac-
tional number of times, and the fractional calculus is important for studying these dif-
ferentiability properties. Fractals are characterized by scaling laws and the fractional
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Figure 3: The sum of six cosine functions can be locally approximated by a straight
line. The three figures show progressive enlargements of the function near the point
x = 1. The function is smoother under successive enlargements and the slope of the
tangent becomes apparent.
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Figure 4: The Weierstrass function cannot be locally approximated by straight line
segments. The three figures show progressive enlargements of the function near the
point x = 1. Roughness occurs on all scales. The slope of the tangent to the curve at
x = 1 appears to be horizontal in (a), indeterminate in (b) and negative in (c).
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derivative at a point can reveal this law. In recent research, scientists at the Mount Sinai
School of Medicine have shown that the surfaces of breast cells are fractals and they
have found clear differences in the scaling laws for benign cells and malignant cells.
The different scaling laws have enabled accurate diagnosis of breast cancers.
The second important newdiscovery that has brought fractional calculus into promi-

nence is that many physical processes are modelled by fractional differential equations.
The importance of a mathematical model is that it can be used to make predictions and
to give insight into the physical process that underlies the behaviour. One area where
mathematical models have been employed extensively is that of diffusion and trans-
port processes. For example the dispersion of pollutants in the ocean and the motion of
electronic charges in conductors are diffusion processes. Here, a probabilistic descrip-
tion leads to a (whole number) differential equation which can be solved to predict
average properties of the system. Similar types of equations are used by financial ana-
lysts to model stock prices. It has recently been discovered that processes governed by
diffusion which is enhanced or hindered in some fashion are better modelled by frac-
tional differential equations than by integer order differential equations. These frac-
tional differential equations are finding numerous applications in areas ranging from
financial mathematics to ocean-atmosphere dynamics to mathematical biology.
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