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‘REGULAR’ POLYGONS

Mr. Peter Merrotsy1

The article “From theArchives... Impossible Constructions” (Anonymous, 1999. Parabola,
35 (1), pp. 12-18) reminded me of the method which a friend, who is a Draftsman, uses
to construct what he thinks are regular figures in his drawings. Here are his instruc-
tions to construct a “regular” polygon with n sides, using only a straight edge and
collapsible pair of compasses. In diagram 1, an example is shown for n = 5.
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Diagram 1(a). The Draughtsman’s Construction of a ‘regular’ pentagon.

Let C be a circle, centre O, radius 1.
1. Draw the diameter AB, and divide it into n equal subintervals. This can be

readily achieved by drawing another line which is divided into n subintervals, and
then constructing a set of parallel lines which intersect AB.
2. Choose the point D to be the point which divides the interval AB internally in

the ratio 2 : n− 2. In the example, AD is 2

5
of AB, that is AD = 4

5
.

3. Construct the equilateral triangle ∆ABC.
4. Draw the line CD extended to meet the circle C at E.

AE will form one side of the “regular” polygon with n sides. You will see in the exam-
ple of a “regular” pentagon in diagram 1(b) that the resulting figure does appear to be
regular.

1Peter is a High School Teacher from Gradys Creek NSW.
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Diagram 1(b). A “regular” pentagon.

Now the article “Impossible Constructions” clearly points out that the Draftsman is
making a very broad and bold claim. It is impossible, for example, to construct a reg-
ular heptagon (7 sided figure) using straight edge and pair of collapsible compasses
alone. So some questions immediately and naturally arise. How accurate is the Drafts-
man’s Construction? Who first discovered the Draftsman’s Construction? And inwhat
context did it appear?
I can only go a small way towards answering the first question. Let us consider the

Draftsman’s Construction of an n-gon. Since the radius of the circle is 1,

AC = 2, AD =
4

n
, OD =

(n− 4)

n
.

Let CD = x, ∠ACD = θ, ∠OED = ψ and ∠DOE = α, as shown in the example of
the pentagon in diagram 1.
In∆ODC,OD = 1

n
, andOC =

√
3 because it is the altitude of an equilateral triangle.

Therefore, using the Cosine Rule in ∆ACD we have

x =
2

n

√
n2 − 2n+ 4.

One application of the Sine Rule in ∆ACD gives

sin θ =

√
3√

n2 − 2n + 4
.

θ

n− 1

√
n2 − 2n+ 4

√
3

Sketch 1.
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Another application of the Sine Rule in∆ODE, alongwith the expansion for sin(120◦−
θ) and the value for cos θ obtained from the information in sketch 1, shows that

sinψ =
(n− 4)

√
3

2
√
n2 − 2n+ 4

.

Since ∆ABC is equilateral, α = 60◦ + θ − ψ.

Of course, we would really like α to equal 2π/n (or 360◦

n
).

n 360
◦

n
θ ψ α Error

3 120◦ 40◦54′ −19◦06′ 120◦ 0
4 90◦ 30◦ 0 90◦ 0
5 72◦ 23◦25′ 11◦28′ 71◦57′ −3′

6 60◦ 19◦06′ 19◦06′ 60◦ 0
7 51◦26′ 16◦06′ 24◦35′ 51◦31′ 5′

8 45◦ 13◦54′ 28◦43′ 45◦11′ 11′

9 40◦ 12◦13′ 31◦56′ 40◦17′ 17′

10 36◦ 10◦54′ 34◦32′ 36◦21′ 21′

11 32◦44′ 9◦50′ 36◦41′ 33◦09′ 25′

12 30◦ 8◦57′ 38◦28′ 30◦28′ 28′

Table 1. Angles are correct to the nearest minute where applicable.

Now the functions for θ and ψ, and therefore also α, are eminently suitable for keying
into a programmable calculator (and if you are lucky it will have a graphics mode).
Table 1 above gives the output for θ, ψ and α for n = 3 to 12. As you would expect,
the graph for θ decreases steadily and approaches (asymptotically) 0, and the graph
for ψ increases steadily and approaches (asymptotically) 60◦. By “error” is meant the
difference between α and the hoped-for value of α. The small size of the error, at least
in absolute terms, immediately strikes the eye. My calculator indicated a maximum
value of the function E(n) = α − 2π

n
(or α − 360

◦

n
) at n = 22 of 0.01 of a radian, or

about 38 minutes. If the relative error is expressed as a percentage of 2π/n, another
surprise becomes evident. For small n (n = 3 to 10), the percentage error is less than
1%. As n increases, the percentage error slowly increases, but appears to approach a
limit of about 10%.

So the Draftsman’s Construction of a “regular” polygon is remarkably accurate.
However, this exploration of the behaviour of α, x and y, their error functions and
their graphs, has given no indication of what mathematical motivation may have lain
behind the development of the Draftsman’s Construction. Was it, perhaps, just wishful
thinking and a happy accident?

Here are two constructions of the real, fair dinkum, honest to goodness regular
pentagon, based on cos π

5
= (1 +

√
5)/4.
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In diagram 2, OF ⊥ AB and C is the midpoint of OF . The bisector of ∠OCAmeets
AB at D and DE ⊥ AB.
(See H. Coxeter, 1969. Introduction to Geometry, 2nd Ed., New York ; John Wiley

and Sons. p. 27.)
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Diagram 2.

In diagram 3, OF ⊥ AB and C is the midpoint of OB. Also CD = CF and BE = BD.
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Diagram 3.

In both cases, AE will form one side of a regular pentagon inscribed in the circle.
EDITORIAL NOTE.
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In the above article, Peter Merrotsy posed the question as to why the Draftsman’s
Construction was so accurate. Mike Hirschhorn, who is a lecturer at UNSW and on
the editorial board for Parabola, gave the following explanation as to the accuracy of
Diagram 1.
Using the diagram as before, we suppose that E is placed in exactly the correct spot

to make AE a side of the true n-gon. (In the diagram, n = 5.) We then ask the question,
where should we place D so that ED passes through the point C, where ∆ABC is an
equilateral triangle? Let the ∠EOA = 2π

n
and consider the centre of the circle C to be

the origin O on the Cartesian Plane. Also set the point E to be (cos 2π

n
, sin 2π

n
) and write

the point C as (0,−
√

3). By finding the equation of the line through EC and setting
y = 0, we find the x coordinate (abscissa) of D to be

x =

√
3 cos 2π

n

sin 2π

n
+
√

3
.

Mike then considered the ratio

BD : DA = 1 + x : 1 − x

and found (after some work) that

1 + x

1 − x
=

sin(π/n+ π/3). cosπ/n

cos(π/n− π/3). sinπ/n
= f(n).

Surprisingly, the graph of this function f(n) is almost a straight line for n > 2. (Try
using your graphics calculator to sketch this function.) The function f(n) is very close

to (n−2)/2, and in fact as n becomes large the ratio f(n) : (n−2)/2 approaches 2
√

3/π,
which is approximately 1.1. Note that this error, too, is about 10%. This explains why
the construction is so accurate.

Editor.
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