Parabola Volume 41, Issue 1 (2005)

Beginning Algebraic Number Theory
David Angell’

Fermat’s Last Theorem is one of the most famous problems in mathematics. Its origin
can be traced back to the work of the Greek mathematician Diophantus (third century
A.p.), who wrote a treatise on solving various kinds of equations. One of his problems
was ‘to divide a square into two squares’, or, in modern terminology, to solve z? +
y* = 2% Diophantus’ Arithmetica was translated into Latin in 1621, and hence became
available to western European scholars. Pierre de Fermat, a lawyer by profession but
nonetheless one of the greatest mathematicians of all time, wrote a note in the margin,

To divide a cube into two cubes, a fourth power into two fourth powers
[and so on] is impossible. I have discovered a marvellous proof of this fact,
but there is not enough space to write it in the margin [of the book].

It is important to remember that both Diophantus and Fermat were talking about solv-
ing equations in integers (actually, in rational numbers, but in this case it comes to the
same thing). So Fermat’s claim is, in effect, that

if n is an integer greater than 2, then the equation 2" + y” = 2" has no
solutions in which z,y and z are positive integers.

This statement has become known as Fermat’s Last Theorem. Fermat wrote his note
in about 1637, but did not leave a proof either in the margin or elsewhere; we can
only speculate as to whether or not he actually had a correct proof. Three centuries
of work by many mathematicians showed that the problem is actually far harder than
(presumably) anyone could have imagined, and opened up new areas of mathematics
in the process. Probably we must assume that even Fermat got it wrong sometimes!
The Last Theorem was finally proved by Andrew Wiles in 1995.

Pythagorean triples. Let’s begin with Diophantus’ problem of solving 2% + y* = 2%. A
solution in positive integers of this equation is known as a Pythagorean triple, because
of the obvious connection with Pythagoras” Theorem. There are many well-known
solutions, for instance,

324+4*=5> and 5*+122=13> and 8&*+15*=17%. (1)

There is also 49612 4 6480? = 81912 which was known to the Babylonians (ca. 1500 B.c.).
Collecting examples, however, is rather unsatisfying, and we would like, if we can, to
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tind all Pythagorean triples. This turns out to be possible through the use of a few basic
facts about integers.
First, let’s look at a few more Pythagorean triples. We have, for example,

62+8 =10° and 92+122=15> and 122+ 162 = 202

and so on. These are not very interesting, however, as they are really just ‘disguised’
versions of 3% + 4> = 5% So we’ll assume initially that =,y and 2 have no common
factor. Then at the end of the problem we can just multiply the common factor back in
again, should we wish to write down all solutions.

So let’s try to find solutions of 2 + y* = z* in which z, y and = are positive integers
with no common factor. Looking at the examples (1), you might notice that in each
case z is odd and y even, or vice versa. Is this always true? In principle there are two
other possibilities.

e Suppose that z and y are both even. Then z? + y* is even, so z? is even, so z is
even. But this means that =,y and z all have a common factor of 2 (or perhaps
more), and we have agreed to ignore this possibility. So this case can be ruled
out.

e Could z and y both be odd? If so, then 22 and y? are odd and so 22 is even. But
now consider the remainder when these squares are divided by 4. We have

2’ = (odd)® = (2p +1)° =4p* +4p+ 1 =4(p* +p) + 1,
and so the remainder is 1; the same goes for y*. On the other hand
2* = (even)® = (2¢)* = 4¢* ,

and the remainder is 0. Altogether, if we divide by 4 then the remainder on the
left hand side is 2, while on the right hand side it is 0. This is impossible.

As we have eliminated all possible alternatives, we may conclude that the fact we
observed in examples (1) is actually true for all Pythagorean triples with no common
factor: one of the numbers x and y is odd, the other even. Which is which? Since x?+ 12
is the same as y? + 22, it doesn’t matter. Let’s assume that z is odd and y is even; once
we have solved to find = and y, if we want all solutions we must remember to allow
for an interchange of = and y.

Before proceeding, let’s also comment that we now know that z is odd too.

What we have done so far really amounts to clearing away some of the minor dif-
ficulties. We now turn to the key step, which is to rearrange the equation z* + y* = z?
and factorise. Using the difference of two squares, we find

=2y =4y (z—y). 2)

Now, what can we deduce from the fact that the product of the numbers z + y and
z — gy is a square? Clearly one possibility is that the two numbers themselves are both
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squares; however by looking at an example we see that this is not the only possibility.
For example, 900 is a square; it can be factorised as

[1x900]=3 %300 =[4x 225]=5x 180 = 6 x 150 =[9 x 100],

and so on. In some cases (enclosed in boxes) each of the two factors is a square, in
other cases not. However, if we look closely at these examples, we may notice that
when the factors are not squares, then they have a common factor — thus 3 and 300 are
both multiples of 3, while 5 and 180 are both multiples of 5. In fact this is always true;
the following result is very important.

Theorem. Suppose that p and ¢ are positive integers, that they have no common factor,
and that their product pq is a square. Then both p and ¢ are squares.

Returning to our investigation of Pythagorean triples, (2) tells us that z+y and z —y
will both be squares, if we can be sure that they have no common factor. Well, suppose
that d > 1 and d is a factor of both z + y and 2 — y. First, we can say that d is odd; for
z is odd and y is even, so z + y and z — y are odd, and odd numbers don’t have even
factors. Next, d is a factor of the sum and difference of z + y and z — y, that is, of 2z
and 2y; and since d is odd it must be a factor of both z and y. But this is impossible: it
means that d is also a factor of x, and we are back to the case which we have already
excluded.

So, now we know that z + y and z — y are both squares, let’s give them some appro-
priate names, say,
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z4+y=a®> and z—y=1>0".

Here a and b are positive integers; they are odd, because z + y and z — y are odd; they
have no common factor, as z + y and z — y have none; and a > b because z +y > z — .
Moreover, we can now easily find z, y and z in terms of a and b. We have

Gty +(z—y) a4 ety —(z—y)  a®—0?

2 2 2 2

and
2t = (2 +y)(z —y) = a’?,
so x = ab. That's it!

Theorem. All solutions of 22 4+ y* = 2? in which z,y, z are positive integers with no
common factor and z is odd, are given by the formulae

a? — a? + b?
z =
2 2 7

where a and b are odd positive integers with no common factor and a > b.

r=ab, y=

Example. Find a large Pythagorean triple without using trial and error. Take, for in-
stance, a = 98765 and b = 4321; use the above formulae (and a calculator!) to get

426763565 + 48679270922 = 48865981332 .

Exercises.



1. What values of a and b will give the Babylonian triple mentioned on page 15?

2. We should have checked that 98765 and 4321 have no common factor. Confirm
this by using the Euclidean algorithm. (Look it up, or ask your teacher!)

Another example. The ideas used in studying Pythagorean triples can be extended
and used to investigate a wide variety of other equations where we seek solutions in
positive integers. A particularly interesting and not excessively difficult example is
z? + 2 = y3; this is sometimes called Mordell’s equation, after Louis Mordell, who made
an extensive study of equations having the form z? + k = y?, where k is a specified
integer.

It is not hard by trial and error to find a solution, z = 5, y = 3, to Mordell’s equation.
Once again, however, we should like to find all solutions; we’ll try to do so by taking
advantage of the methods we used above.

So, we wish to find all positive integers x and y which satisfy the equation

w2 +2 =1 (3)

Let’s jump straight to the “key step” of factorising part of the equation. This doesn’t
seem to be as easy as the last time since we can’t find a difference of two squares. Or
can we? How about this?!

(64 VD) (e VD)=

This might look totally crazy as the factors on the left hand side are not integers (they
are not even real numbers!). However, they are elements of the set

S =a+bv—2| aand b are integers ,

and it is an extraordinary fact that numbers in S behave in many ways like the usual
integers. First we have a result which is very similar to that at in the Theorem on
page 16.

Theorem. Suppose that p and ¢ are numbers in S, that they have no common factor,
and that their product pq is a cube. Then both p and ¢ are cubes.

Before we can use this theorem we need to know a few things about factors in S.
For a start, what does it even mean to say that p is a factor of ¢ in S? It means that the
quotient ¢/p is in S. For example,

T+ v—2
3—2v/-2

so 3 — 2v/—2is a factor of 7 + v/—2. On the other hand,

=14++v—-2 isin§,

14+ 7v/-2 20 17 ) .
S s ey tin S
5 35 11+22 iIsnotin S5,
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so 2 — 31/—2 is not a factor of 1 + 7v/—2.

It's probably not too surprising that the number /=2 is a particularly important
element of S. We'll show that if x and y form a positive integer solution of (3) then
v/—2 is not a factor of z. For if it were, we should have

r=+-2 (a + b\/—_2)
for some a + by/—2 in S; taking the complex conjugate? of both sides gives
r=—v—-2 (a — b\/—_2) )
Multiplying these last two equations, we find that
r? = 2(a® + 2b%)

and so z is even. Hence y is also even; dividing both sides of (3) by 4 leaves a remainder
of 2 on the left hand side and 0 on the right hand side, which is impossible. Thus v/—2
is not a factor of x. Note the similarity of this last step to the argument on page 15.

The next step is to check for any common factors of = + /=2 and = — /-2, so that
we can apply the theorem. Suppose that a + by/—2 is a factor of both these numbers;
then it is a factor of their difference 21/—2. (It’s a factor of their sum too, but this turns
out to be unimportant.) That is,

(a+0vV=2)(c+dv—-2)=2V-2

for some ¢ + dy/—2 in S. As in the previous paragraph we can take conjugates and
multiply to obtain

(a® +2b%)(c® +2d*) = 8.
Now note that a? + 2b* and ¢® + 2d* are just positive integers. So this last equation
tells us that a® + 2b* is a factor (in the ordinary sense!) of 8, and there are just four
possibilities:

a®>+20¥=1,24o0r8.

We could try to eliminate possibilities one by one, but there is a neat short cut which
will wipe out three cases at a stroke. If a* + 2b? is even then a is even, say a = 2¢, and

a—l—b\/—_:\/—_Q(b—e\/—_Q);

then /—2 is a factor of = + v/—2 and hence is a factor of z; but we know that this is
impossible. Therefore a® + 2b? cannot be even, and we have a? + 2b*> = 1,50 a* = 1 and

b = 0, so (at last!)
a+bv—2==+1.

2The complex conjugate of a number such as a + bv/2 can be obtained by replacing the plus sign with
aminus, i.e. a — byv/2. Recall also that @ and b can be zero! Ed.




What we have just shown is that « + /-2 and = — v/—2 have no common factor except
1 (and —1). Since their product is a cube, each is itself a cube, and so we can write

r+vV-2=(a+ b\/—_2)3: (a® — 6ab?) + (3a®b — 2b*)V/—2.

Equating real and imaginary parts®,
x=a’—6ab’ and 1=3a’b—2b".

We have eliminated all the complex numbers (involving the square root of negative real
numbers) from the problem and have reduced it to two equations in ordinary integers.
The second of these gives a factorisation 1 = b(3a® — 2b%). Thus b is a factor of 1, that is,
b = %1, and in each case we can calculate a, x and y. One possibility is

b=1,3a>—-20=1 andso a==+1, =45, y=3;

the other, b = —1, does not work since (check this for yourself) it does not give integral
values for a,z and y. If we are looking for positive solutions we must ignore x = —5,
and the problem is finished.

Theorem. The only solution of 22 + 2 = y? in which z and y are positive integers is
rT=25,y=3.

Comment. In other words, the equation has no solution except for the one we found
by trial and error. This is, perhaps, a surprising contrast to the case of Pythagorean
triples, where we found an infinite collection of solutions.

Complications. Our determination of all solutions of Mordell’s equation depended on
the similarity of numbers a + by/—2 to the ordinary integers. If we investigate other
equations there are a number of difficulties which may arise. Let’s look briefly at two
of these.

1. The problem of units. The key result we used in both of our previous investigations
went something like this: Suppose that p and ¢ are numbers with no common factor,
and that their product pq is an nth power. Then both p and ¢ are nth powers.
As we have seen, this is true if the nth powers it refers to are squares of positive in-
tegers, and also if they are cubes of numbers in S. However, in other situations the
result is untrue. For example, consider all (not only positive) integers. We can write
expressions such as

900 = (—9) x (—100) , (4)

and clearly the factors are not squares. This is quite easy to fix. Suppose that p and ¢
are integers, that they have no common factor, and that their product pq is a square.
Then each of p and ¢ is plus—or-minus a square.

3 A number like a + b\/2 has two parts: the real part, a which is just a real number, and the imaginary
part, which involves the square root of a negative number. Here we are comparing the different parts
of the left and right hand sides of the equation. In the case of the imaginary parts, by comparing the
coefficients of v/2. Ed.



However, sometimes there are further difficulties. For example, in the set of numbers
T = a+bi|aand b are integers ,

where i = —1, we have
(34+14)2 =8+ 6i =2(4+3i) . (5)

The left-hand equality shows that 8 + 6i is a square; also, the factors on the right hand
side have no common factor; but these factors are not squares.

Exercise. Confirm this by writing 2 = (a + bi)?, expanding, solving to find a and b, and
showing that they are not integers.

For T, a correct version of our basic result is as follows: Suppose that p and ¢ are in T,
that they have no common factor, and that their product pq is a square. Then each of p
and ¢ is u times a square, where wis 1, —1, i or —i.

Indeed, the problem in example (5) can be resolved by observing that

2=i(1—-1i)* and 4+ 3i=—i(1+2i)*.

Numbers such as 1, —1, ¢ and —i in T are called units. They are factors of 1 because
1 = (i)(—i) and so on, and they are basically unimportant in factorisations. Thus, for
example, we can write 21 as

21 =3 x 7= (3i) x (=7i) = (=3) x (=7) = (=3i) x (74),

and none of these expressions is really a ‘better” factorisation than the others. There
are even worse problems in the set

U = a+ bV3| aand b are integers .

Here we have

1= (24 V3)(2—V3)= (T+4V3) (7 - 4V3)
and so all four of the factors shown are units. In fact, U has infinitely many units.

Exercise. Prove it!
Hint. First show that any power of a unit is also a unit.
A version of our key result which applies to many further sets of numbers follows.

Theorem. Suppose that p and ¢ are elements of a set with unique factorisation, that
they have no common factor, and that their product pq is an nth power. Then each of p
and ¢ is equal to a unit times an nth power.

Exercise. Consider the numbers p = 2 and ¢ = 14 — 5v/3 in U. Show that p and ¢ have
no common factors (except for units) and that their product is a square, but that neither
pnor ¢ is a square. Reconcile these facts with the above theorem.

2. The problem of non—unique factorisation. To clarify the above theorem we need to
explain what is meant by ‘a set with unique factorisation’. First, consider again the
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ordinary integers. Any integer (except 0) can be decomposed into a product of prime
numbers, those which cannot be factorised any further. For example,

60=2x2x3x5.
Alternatively, we could write
60=3x2x5x2 or 60=(—3)x2x(-2)x5;

but changing the order and inserting units are not very important, so in a sense these
three factorisations are really the same. We shall say that 60 has only one factorisation
into primes. As you may already know, this is true not only for 60 but for all non-zero
integers. We do have, of course,

60=4x15=6x 10, (6)
but this is a ‘fake” non—unique factorisation since both products can be factorised fur-

ther, and each willend up as 2 x 2 x 3 x 5.

Theorem. The Fundamental Theorem of Arithmetic. Any non—zero integer can be fac-
torised into primes in one and only one way.

Exercise. What about 1 and —1?

By ‘a set with unique factorisation” we mean one in which such a property holds.
Thus the integers have unique factorisation; and it is possible to prove that the sets S,
T and U considered above also have unique factorisation. It also turns out that the
key result we have used in solving Diophantine equations is a consequence of unique
factorisation.

Unfortunately, unique factorisation is by no means guaranteed when we study
Diophantine equations by the above methods. If we think about a different case of
Mordell’s equation, 2 + 5 = y*, the approach used above would lead us to consider

V ={a+bv—5]| aand b are integers .
But consider the following:
6=2x3=(1+v-5)(1—v-5). (7)

If we want to reconcile these two expressions by splitting them into primes, we would
start by trying to factorise 2 in V. That is, we need

(a+b\/—5) (C+d\/—5): 2; (8)
by the method of taking conjugates and multiplying we obtain

(a® + 5b%)(c® + 5d*) = 4.



Thus a® + 5b? is a factor of 4. It is not hard to show that a? + 56 = 2 is impossible;
if a2+ 50> = 1thena =+1and b =0, so

a—+by—5==1,

which is a unit; if a* 4+ 5b* = 4 then ¢* 4+ 5d*> = 1, and by the same argument ¢ + d/—5
is a unit. Therefore (8) is not a proper factorisation, as it holds only when one of the
factors is a unit. By similar means we show that 3 and 1 + /=5 and 1 — /=5 cannot be
factorised either. Hence, (7) is a genuine example of non—unique factorisation, and is
not at all like the ‘fake” example (6).

In fact, the theorem at the top of page 23 does not apply at all to the set V.

Exercise. Show that p = 2 — /=5 and ¢ = —2+ 3v/—5 have no common factor in V and
that pq is a square, but that neither p nor g is a square or the negative of a square.

The topic of the kinds of numbers which have unique factorisation has been the
subject of an immense amount of mathematical research.

We conclude with one more look at Fermat’s Last Theorem. For n = 3 we consider
the equation
2ty =2 ©)

if you are handy with complex numbers you can factorise this as
(z +y) (2 +wy) (@ +w’y) = 2°
where w = cos 27 + isin 27. To apply the above methods we need to consider
W = {a + bw | a and b are integers} ;

it turns out that W has unique factorisation, and the same ideas will suffice to show
that (9) has no solution, though the details are far from easy. In fact all this will work
if the exponent n is from 3 up to 22; unfortunately, when n = 23 we need to employ
a set which turns out not to have unique factorisation, and the method collapses. To
explain how Fermat’s Last Theorem was eventually proved in its entirety would be a
different, longer and much harder story.



