Parabola Volume 41, Issue 1 (2005)

On the Sum of Powers of Digits of a Number

N. P. Singh¹

Introduction: In a recent article in *Parabola* (Vol.37, No.3, 2001, 13–16), Anard Kumar proved that the dynamical system defined by summing the squares of the digits of a positive integer repeatedly leads to a fixed point solution $\{1\}$ or a periodic orbit $\{4, 16, 37, 58, 59, 145, 42, 20\}$. The present work identifies fixed points and periodic orbits in the dynamical system defined by summing the *r*th power of the digits of a positive integer repeatedly.

The central result of this paper is that the dynamical system defined by summing the *r*th power of the digits of a positive integer repeatedly leads to a finite periodic orbit.

Proof. Let *n* denote a positive integer consisting of *m* digits, then

$$m = \left[\log_{10} n\right] + 1 < \log_{10} n + 1.$$

The sum of the *r*th powers of the digits of *n* is denoted by n_1 and the number of digits in n_1 is denoted by m_1 . It now follows that

$$n_1 \le 9^4.m$$

and

$$m_1 \le \log_{10}(9^4.m) + 1$$

$$m_1 < r + \log_{10} m + 1.$$
(1)

We call equation (1) the first iteration. Now consider the function

$$f(x) = x - \log_{10} x_{10}$$

which is strictly increasing with x since $f'(x) = 1 - \frac{\log_{10} e}{x} > 0$. We now have,

$$f(r + \log_{10} r + 2) = r + \log_{10} r + 2 - \log_{10} (r + \log_{10} r + 2)$$

= $r + 2 - \log_{10} \left(1 + \frac{\log_{10} r}{r} + \frac{2}{r} \right) > r + 1$ for $r \le 1$,

therefore
$$x - \log_{10} x > r + 1$$
 for all $x \ge r + \log_{10} r + 2$ for all $r \ge 1$. (2)

Case 1: $m \ge r + \log_{10} r + 2$ In this case, $m - \log_{10} m > r + 1$ [using (2)] \Rightarrow $m > r + 1 + \log_{10} m > m_1$.[using (1)]

¹Narendra Singh is a reader from Bihar, India.

Thus every iteration decreases the numbers of digits. Hence after a finite number of iterations, we get a number whose numbers of digits is less than $r + \log_{10} r + 2$.

Case 2: $m < r + \log_{10} r + 2$

In this case using (1),

$$m_1 < r + \log_{10} m + 1 < r + \log_{10} (r + \log_{10} r + 2) + 1$$

= $r + \log_{10} r + \log_{10} \left(1 + \frac{\log_{10} r}{r} + \frac{2}{r} \right) + 1$
 $m_1 < r + \log_{10} r + 2.$

Thus for every starting number n, if we sum the rth powers of the digits successively we get, after a finite number of iterations, a number whose digits are less than $r + \log_{10} r + 2$ in number, and it remains so for all further iterations. As $r + \log_{10} r + 2$ is a fixed number and the iterations can occur as many times as we please, we will eventually culminate in a cycle.

We have calculated cycles for r = 1 to 6. The cycles of length 1 and of larger lengths are listed below for r = 1, 2, 3 and 4. We have not listed cycles for r = 5 and 6, for space considerations. For r = 5, we got 7 cycles of length 1 and 9 cycles of greater length. For r = 6, we got 2 cycles of length 1 and 5 longer cycles.

The table below shows terminating cycles for the dynamical system defined by summing the rth powers of the digits of a positive integer successively.

Value	Cycles of length 1	Cycles of length
of <i>r</i>		greater than 1
1	1,2,3,4,5,6,7,8,9	
2	1	a) 4–16–37–85–89–145–42–
		20–4 [Anand Kumar*]
3	1,153,370,371,407	a) 1459–919–1459
		b) 55–250–133–55
		c) 160–217—352–160
4	1,1634,8208,9474	a) 2178–6514–2178
		b) 1138–4179–9219–13139–
		6725-4338-4514-1138

Acknowledgement:

I am very thankful to Dr. D. P. Verma for his guidance.