
Parabola Volume 41, Issue 1 (2005)

Solutions to Problems 1161-1170

Q1161 Find all values of x (real number) satisfying

x− 1

2004
+

x− 3

2002
+

x− 5

2000
+ · · ·+ x− 2003

2

=
x− 2

2003
+

x− 4

2001
+

x− 6

1999
+ · · ·+ x− 2004

1

ANS. There are several ways to solve the equation.

1. We can rewrite the equation as

x

(

1

2004
− 1

2003
+

1

2002
− 1

2001
+ · · ·+ 1

2
− 1

1

)

=
1

2004
− 2

2003
+

3

2002
− 4

2001
+ · · ·+ 2003

2
− 2004

1
.

Performing the subtraction of each pair of fractions yields:

x

(

− 1

2004× 2003
− 1

2002× 2001
− · · · − 1

2× 1

)

=− 2005

2004× 2003
− 2005

2002× 2001
− · · · − 2005

2× 1
,

or equivalently

x

(

1

2004× 2003
+

1

2002× 2001
+ · · ·+ 1

2× 1

)

= 2005

(

1

2004× 2003
+

1

2002× 2001
+ · · ·+ 1

2× 1

)

.

Dividing both sides by A =
1

2004× 2003
+

1

2002× 2001
+ · · · + 1

2× 1
, gives x =

2005.

2. Since each side of the equation has exactly 1002 terms, we can subtract one from
each term and obtain

(

x− 1

2004
− 1

)

+

(

x− 3

2002
− 1

)

+ · · ·+
(

x− 2003

2
− 1

)

=

(

x− 2

2003
− 1

)

+

(

x− 4

2001
− 1

)

+ · · ·+
(

x− 2004

1
− 1

)

,
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or equivalently

x− 2005

2004
+

x− 2005

2002
+ · · ·+ x− 2005

2

=
x− 2005

2003
+

x− 2005

2001
+ · · ·+ x− 2005

1
.

Bringing all terms to one side yields

(x− 2005)

[(

1

2003
− 1

2004

)

+

(

1

2001
− 1

2002

)

+ · · ·+
(

1

1
− 1

2

)]

= 0.

Let A =

(

1

2003
− 1

2004

)

+

(

1

2001
− 1

2002

)

+ · · ·+
(

1

1
− 1

2

)

.

Then it is easy to see that A is positive. Hence the equation

A(x− 2005) = 0

implies x− 2005 = 0, i.e. x = 2005.

Q1162 Two women begin to walk at sunrise, one directly from point A to point B, the
other directly from point B to point A. They pass exactly at noon. The first reaches
point B at 4pm, the second reaches point A at 9pm.

At what time was sunrise that day?

ANS. Let x be the hour the sun rose, and let vA and vB be the speeds of the women
leaving point A and point B, respectively. Then

(12− x)vA + 4vA is the distance covered by A

and
(12− x)vB + 9vB is the distance covered by B.

Since they pass at noon,
(12− x)vA = 9vB

and
4vA = (12− x)vB.

Dividing these equations to remove vA and vB yields

12− x

4
=

9

12− x

or (12− x)2 = 36. So x = 6.
The sun rose at 6am that day.
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Q1163 One hundred cows each coloured black or white or brown stand in a field
eating 100 bales of hay. Each black cow eats 5 bales, each white cow eats 3 bales, while
it takes 3 brown cows to consume 1 bale of hay. Assume that all 100 bales are consumed
and that there is at least one cow of each colour. How many cows of each colour are
there?

ANS. Let x be the number of black cows, y the number of white cows, and z the
number of brown cows. Then

x+ y + z = 100 (1)

5x+ 3y +
z

3
= 100. (2)

Multiplying (1) by 5 and subtracting (2) from the resulting equation yields

2y +
14z

3
= 400

or

y = 200− 7z

3
. (3)

Equations (1) and (3) give

x =
4z

3
− 100.

So any positive integers x, y, z such that

x =
4z

3
− 100 and y = 200− 7z

3

will be a solution. In order that x and y are integers, 3 must divide z, i.e. z = 3k for
k = 1, 2, 3, . . .. Then

x = 4k − 100 and y = 200− 7k.

Condition x > 0 implies k > 25, and condition y > 0 implies k ≤ 28. So all possible
solutions are

k = 26 : x = 4, y = 18, z = 78
k = 27 : x = 8, y = 11, z = 81
k = 28 : x = 12, y = 4, z = 84.

Q1164 Among all pairs of positive integers (p, q) such that p + q = 2004, which pair
yields the maximum value p!q! and which pair yields the minimum value p!q!? (Recall
that for any positive integer n,

n! = 1.2.3 . . . (n− 1).n.

E.g. 4! = 1.2.3.4 = 24.)
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ANS. By symmetry it suffices to consider the following values of (p, q) :

(1, 2003), (2, 2002), (3, 2001), . . . , (1001, 1003), (1002, 1002).

Now note that
p!q! = p(p− 1)!q!

and
(p− 1)!(q + 1)! = (q + 1)(p− 1)!q!.

So
p!q! < (p− 1)!(q + 1)!

if and only if
p < q + 1

or
p < 2004− p+ 1

or
p ≤ 1002.

Therefore
1002! 1002! < 1001! 1003! < . . . < 1! 2003!

Hence p!q! has maximum value when p = 1, q = 2003 or p = 2003, q = 1, and has
minimum value when p = q = 1002.

Q1165 Let n be a natural number and k be the number of distinct primes that divide
n. Prove that

n ≥ 2k.

ANS. If n = 1 then there is no prime that divides n. So k = 0. Thus n ≥ 2k.
Now assume that n > 1. Let p1, p2, . . . , pk be k distinct primes that divide n. Then

n = pα1

1 · pα2

2 . . . p
αk

k
,

where α1, α2, . . . , αk are integers greater than or equal to 1. Also none of the primes
p1, p2, . . . , pk is less than 2. So

n ≥ 2α1+α2+···+αk ≥ 2k.

Q1166 Bill wants to build a deck at the corner of his house, as in the figure, where

AB = DE and BC = CD. He puts a railing around the outer edges of the deck.
Railings are sold in length 6m each, and he buys two of them, intending to cut each
into two pieces to have the four required railings.
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deck

house
D E

A

BC

How should he cut to maximise the area of the deck?

ANS. Let x = BC. Then AB = 6− x. The area of the deck is then

D E

A

BC

F

6− x

x

x

6− x

G

S = area (BCDF )− area (AGEF )

= x2 − (2x− 6)2 (since

AF = EF = 2x− 6)

= −3(x2 − 8x+ 12)

At this stage if you have learned about parabolas then a sketch of
S = −3(x2 − 8x + 12) reveals that S attains its maximum value when x = 4, and the
maximum value is 12.
If you haven’t yet learned about parabolas you can rewrite S as

S = −3[(x− 4)2 − 4]

= −3(x− 4)2 + 12.

Then it is clear that S ≤ 12 for all x satisfying 0 ≤ x ≤ 6, and S attains its maximum
value 12 when x = 4.

Bill should cut each railing into two pieces of length 4m and 2m, respectively.

Q1167 The lengths of the sides of a triangle form an arithmetic progression with dif-
ference

√
2. Assume that the area of the triangle is 12. Prove that it is a right-angled

triangle.
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ANS. Let the sides of the triangle be a, b, c with a < b < c. Then

a = b−
√
2 and c = b+

√
2,

where b >
√
2. If s =

a+ b+ c

2
, then by Heron’s formula

s(s− a)(s− b)(s− c) = 144.

Since

s =
b−

√
2 + b+ b+

√
2

2
=

3b

2
,

s− a =
b

2
+
√
2, s− b =

b

2
, s− c =

b

2
+
√
2.

We have
3b2

4

(

b2

4
− 2

)

= 144,

or
b4 − 8b2 − 768 = 0.

Solving this quadratic equation with unknown b2 yields

b2 = 32.

So the sides of the triangle are

a = 4
√
2−

√
2 = 3

√
2

b = 4
√
2

c = 4
√
2 +

√
2 = 5

√
2.

Since
a2 + b2 = 50 = c2,

by Pythagoras’s Theorem, the triangle is a right-angled triangle.

Q1168 Inequality (2) in Question 1154 (Vol 40, No.1, 2004),

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc
,

can be generalised to

1

a4 + b4 + c4 + abcd
+

1

b4 + c4 + d4 + abcd
+

1

c4 + d4 + a4 + abcd
+

1

d4 + a4 + b4 + abcd
≤ 1

abcd
.
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Prove this inequality.

ANS. For any positive real numbers x, y, z, there holds

x4 + y4 + z4 =
1

2
(x4 + y4) +

1

2
(y4 + z4) +

1

2
(z4 + x4)

≥ x2y2 + y2z2 + z2x2 (Cauchy’s inequality)

=
1

2
(x2y2 + y2z2) +

1

2
(y2z2 + z2x2) +

1

2
(z2x2 + x2y2)

≥ xy2z + yz2x+ zx2y (Cauchy’s inequality)

= xyz(x+ y + z).

Applying the above for a, b, c, d yields

1

a4 + b4 + c4 + abcd
+

1

b4 + c4 + d4 + abcd
+

1

c4 + d4 + a4 + abcd

+
1

d4 + a4 + b4 + abcd
≤ 1

abc(a+ b+ c) + abcd
+

1

bcd(b+ c+ d) + abcd

+
1

cda(c+ d+ a) + abcd
+

1

dab(d+ a+ b) + abcd

=
1

abc(a+ b+ c+ d)
+

1

bcd(a+ b+ c+ d)

+
1

cda(a+ b+ c+ d)
+

1

dab(a+ b+ c+ d)

=
d+ a+ b+ c

abcd(a+ b+ c+ d)
=

1

abcd
.

Q1169 Given T1 = 1, we define

Tn+1 = 1 + T1T2T3 . . . Tn for n ≥ 1.

(a) Prove that Tm and Tn are relatively prime integers ifm 6= n.

(b) Prove that Tn+1 = T 2
n
− Tn + 1 for n > 1.

ANS.

(a) Without loss of generality we can assume m > n. Let d be a divisor of both Tm

and Tn. Then Tm = kd and Tn = ℓd for some k, ℓ ∈ N. Since

Tm = 1 + T1 . T2 . . . Tn . . . Tm−1

we have
kd = 1 + ℓdr,
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where r = T1T2 . . . Tn−1Tn+1 . . . Tm−1. So (k − ℓr)d = 1.

Since both d and k − ℓr are natural numbers, we must have d = 1. Hence Tm and
Tn are relatively prime integers.

(b) For n > 1 we have
Tn+1 = 1 + T1 . . . Tn−1 . Tn. (1)

Note that
Tn = 1 + T1 . . . Tn−1,

so
T1 . . . Tn−1 = Tn − 1. (2)

Substituting (2) into (1) gives

Tn+1 = 1 + (Tn − 1)Tn

= T 2

n
− Tn + 1.

Q1170 Let Tn be defined as in Question 1169.

(a) Prove that

1

T1

+
1

T2

+ · · ·+ 1

TN

= 2− 1

TN+1 − 1
for all N ≥ 1.

(b) (For Senior students) Find the sum of the series

∞
∑

n=1

1

Tn

.

ANS.

(a) From (b) of Question 1169 we deduce

Tn+1 − 1 = Tn(Tn − 1) for all n ≥ 2,

which implies

1

Tn+1 − 1
=

1

Tn(Tn − 1)
=

1

Tn − 1
− 1

Tn

, n ≥ 2,

or
1

Tn

=
1

Tn − 1
− 1

Tn+1 − 1
, n ≥ 2.
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So for N ≥ 2 we have

1

T1

+
1

T2

+ · · ·+ 1

TN

=
1

T1

+

(

1

T2 − 1
− 1

T3 − 1

)

+

(

1

T3 − 1
− 1

T4 − 1

)

+ . . .+

(

1

TN−1 − 1
− 1

TN − 1

)

+

(

1

TN − 1
− 1

TN+1 − 1

)

.

Simplifying the right hand side gives

1

T1

+
1

T2

+ · · ·+ 1

TN

=
1

T1

+
1

T2 − 1
− 1

TN+1 − 1
.

Since T1 = 1 and T2 = 2 we have

1

T1

+
1

T2

+ · · ·+ 1

TN

= 2− 1

TN+1 − 1
.

The formula is also true for N = 1.

(b) We first note that

TN+1 = 1 + T1 . T2 . . . TN ≥ T2 . . . TN ≥ 2N−1, N ≥ 2.

So

0 ≤ 1

TN+1

≤ 1

2N−1
, N ≥ 2.

Hence lim
N→∞

1

TN+1

= 0.

Therefore

∞
∑

n=1

1

Tn

= lim
N→∞

N
∑

n=1

1

Tn

= lim
N→∞

(

2− 1

TN+1 − 1

)

= 2.
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