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Checking Determinants1

J. Guest2

When I was a young mathematics student, I often wondered whether there was an
easy way of checking determinants. By recently studying the checking of contractants
I found there is a fairly easy way to accomplish this.

Suppose you wish to evaluate an nth order determinant D, you expand it to reach
your result and of course you are not quite sure whether you are right at this point.
Your next move is to construct a check determinant D1 as follows. You first add a
checkrow which consists of all the column sums of D. If n is odd you now delete row
1 and make your checkrow your last row. Should n be even you also delete row 1 but
this time multiply each element of the checkrow by −1. To make the above quite clear
let us study the following two illustrations.

Illustration 1. Evaluate and check D =

∣∣∣∣∣∣
3 2 1
2 5 3
1 4 3

∣∣∣∣∣∣ .

We now study the auxiliary system AS =

∣∣∣∣∣∣∣∣
3 2 1
2 5 3
1 4 3
6 11 7

∣∣∣∣∣∣∣∣ ,
where we have added the checkrow. As n is odd for D, the checkrow remains unal-
tered.

Next, we compute D the usual way and obtain that D = 6,

finally we study D1, our check determinant, as given by D1 =

∣∣∣∣∣∣
2 5 3
1 4 3
6 11 7

∣∣∣∣∣∣ .
Computing D1 yields that D = 6 = D1, so all is well.

Illustration 2. Evaluate and check D =

∣∣∣∣∣∣∣∣
1 1 1 1
5 7 9 3
2 1 8 2
4 2 6 5

∣∣∣∣∣∣∣∣ .
Proceeding the usual way you should find that D = −4. As D is an even determi-

1If you have not met a determinant before then you should consult the Editor’s
footnote at the end of this article

2Julius Guest is a Parabola reader from East Bentleigh in Victoria
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nant we must now reverse all the signs in the checkrow of the check determinant:

D1 =

∣∣∣∣∣∣∣∣
5 7 9 3
2 1 8 2
4 2 6 5

−12 −11 −24 −11

∣∣∣∣∣∣∣∣ .
Computing D1 gives D1 = −4 also. So now we can be reasonably confident that all

should be well.

Reference.

J. Guest, The Checking of Contractants, S & M Note 235, Aeronautical Research Labora-
tories.

Editor’s Footnote
Most of you will be familiar with solving systems of linear equations with two or

perhaps three unknowns. Solving two simultaneous equations for two unknowns is
fairly straightforward but three equations in three unknowns can start to get tedious.
But why stop at three? Some problems involve large numbers of equations with large
numbers of unknowns. In order to manage these problems it is useful to write the
equations in matrix form and to use matrix reduction methods. As an example, the
system of equations

2x− 3y + 4z = 8

3x− 5y + 2z = −1

x− 2y + 3z = 6

can be written in matrix form as 2 −3 4
3 −5 2
1 −2 3

 x
y
z

 =

 8
−1
6


where the array  2 −3 4

3 −5 2
1 −2 3


is called a matrix. As an exercise you might like to show that this system of equations
has the unique solution x = 1, y = 2, z = 3.

In general suppose that we have a system of n linear equations to solve for the n
unknowns x1, x2, x3, . . . xn as follows:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

an1x1 + an2x2 + . . .+ annxn = bn.
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We can re-write the above system in matrix form as
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann




x1

x2
...
xn

 =


b1
b2
...
bn


Not every system of n linear equations in n unknowns has a unique solution. For

example the linear system

2x− 3y + 4z = 8

3x− 5y + 2z = −1

x− 2y − 2z = 5

does not have a unique solution. Can we determine in advance if the system of equa-
tions does have a unique solution? It turns out that we can. We write the linear system
in matrix form and then we compute the so called determinant of the matrix. Here we
will consider the case where the right hand side of the equations is non-zero. If the
determinant is equal to zero then the system does not have a unique solution but if the
determinant is not equal to zero then there is a unique solution. Moreover, if a unique
solution exists then it can be written down using a standard formula (Cramer’s Rule)
involving determinants. In particular the solution for the unknown xk can be written
as

xk = det(Ak)/ det(A)

where

A =


a11 a12 . . . a1(k−1) a1k a1(k+1) . . . a1n
a21 a22 . . . a2(k−1) a2k a2(k+1) . . . a2n
...

...
...

...
...

...
...

...
an1 an2 . . . an(k−1) ank an(k+1) . . . ann


and

Ak =


a11 a12 . . . a1(k−1) b1 a1(k+1) . . . a1n
a21 a22 . . . a2(k−1) b2 a2(k+1) . . . a2n
...

...
...

...
...

...
...

...
an1 an2 . . . an(k−1) bn an(k+1) . . . ann

 .

and det(Z) means the determinant of the matrix Z.
We now consider the problem of computing determinants. The determinant of the

2× 2 matrix

A =

(
a11 a12
a21 a22

)
is

det(A) ≡
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ ≡ a11a22 − a12a21.

3



The determinant of the 3× 3 matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


is

det(A) ≡

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ ≡ a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ .
For a general n× n matrix

det(A) =
n∑

i=1

(−1)i+jaij det(Mij)

where Mij is the so-called minor matrix obtained by eliminating the ith row and the
jth column from A.

As an example consider the determinant of the matrix

A =


1 1 1 1
5 7 9 3
2 1 8 2
4 2 6 5

 .

We begin with the expansion

det(A) =

∣∣∣∣∣∣
7 9 3
1 8 2
2 6 5

∣∣∣∣∣∣−
∣∣∣∣∣∣
5 9 3
2 8 2
4 6 5

∣∣∣∣∣∣+
∣∣∣∣∣∣
5 7 3
2 1 2
4 2 5

∣∣∣∣∣∣−
∣∣∣∣∣∣
5 7 9
2 1 8
4 2 6

∣∣∣∣∣∣ .
We now need to evaluate four determinants and then combine the results as above.
Explicitly we have ∣∣∣∣∣∣

7 9 3
1 8 2
2 6 5

∣∣∣∣∣∣ = 7

∣∣∣∣8 2
6 5

∣∣∣∣− 9

∣∣∣∣1 2
2 5

∣∣∣∣+ 3

∣∣∣∣1 8
2 6

∣∣∣∣
= 7 (40− 12)− 9 (5− 4) + 3 (6− 16)

= 157

and similarly we can evaluate∣∣∣∣∣∣
5 9 3
2 8 2
4 6 5

∣∣∣∣∣∣ = 62,

∣∣∣∣∣∣
5 7 3
2 1 2
4 2 5

∣∣∣∣∣∣ = −9,

∣∣∣∣∣∣
5 7 9
2 1 8
4 2 6

∣∣∣∣∣∣ = 90

so after combining we have det(A) = −4.
Clearly, evaluating determinants in this way is a time consuming task with lots of

room for arithmetic errors. How can we be reasonably certain that we have not made
an error? The prequel article by J. Guest addresses this issue.
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