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History of Mathematics: The Invention of Complex Num-
bers

Michael AB Deakin1

In my previous column, I outlined the story of the most recent extension of the
number system, so that it expanded to include “infinitesimals,” numbers smaller than
any of our familiar real numbers, and yet not the same as zero. This time I want to tell
of the early days of a similar extension: the introduction of the complex numbers.

When I was in the last years of my own high school studies, I was introduced to
complex numbers via quadratic equations. Readers of Parabola will most likely be fa-
miliar with the story: if the discriminant of a quadratic equation is positive, then the
equation has two real roots, while if it is negative, there are two complex roots; the
intermediate case of a zero discriminant gives rise to two real roots, but they are equal
to one another.

The introduction of the complex numbers means that we can say that every quadratic
equation has exactly two roots (although in some circumstances these may happen to
be equal. [This is in fact a special case of a more general theorem according to which
every nth-degree polynomial equation has exactly n roots, if we allow the possibility of
complex roots]).

So when you encountered this nice result, you may well have felt as I did that
this was the motivation behind the introduction of complex numbers. However, as
I discovered later this is a mistaken belief, and the truth of the matter is much more
roundabout.

It was actually the solution of the cubic (3rd-degree) equation that stimulated the
introduction of “imaginary” and complex numbers. There are many places in which
you may read this story.

The website
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Cardan.

html will be accessible to most readers and is reasonably accurate. Another account
is given by William Dunham in Chapter 6 of his Journey through Genius. Both these
retellings of the story give a lot of lurid details that I will omit here. There is a more
sober account, emphasizing rather the underlying Mathematics, in JN Crossley’s The
Emergence of Number. Also in a recent (2005) issue of The Mathematical Intelligencer, a
journal which can be consulted in most university libraries, there is an excellent sum-
mary by Kellie Gutman, who provides a lot of interesting details that I leave readers to
discover for themselves.
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However, here are the bare bones of the story. The first published account of the so-
lution of a cubic equation is to be found in an algebra text (the very first one) called Ars
Magna (‘The Great Art’) by Gerolamo Cardano (Cardan). This appeared in 1545, but
much of the work on cubics contained in it was the product of research by Cardano’s
associates Fior, Fontana (‘Tartaglia’), del Ferro and Ferrari. This appropriation of the
work of others (although acknowledged) led to some bitter animosities.

But let us leave all that side of things to concentrate on the actual Mathematics.
Write the general cubic as:

x3 + ax2 + bx+ c = 0.

One original contribution that Cardano did make, was the observation that we could al-
ways take a to be zero. This leads to important consequences, and so Cardano deserves
an honorable place in the story, his other work consisted of retelling the discoveries of
others.

Here is why we may take a = 0. In the general equation (above), put x = y + h,
where the value of h remains to be chosen. After some simplification, we find that the
equation becomes

y3 + (3h+ a)y2 + (dh2 + 2ah+ b)y + (h3 + ah2 + bh) = 0.

If we now choose the value h = −a/3, this equation reduces to:

y3 +

(
b− a2

3

)
y +

(
2a3

27
− ab

3

)
= 0,

which we can rewrite as
y3 +By + C = 0.

This equation has the same form as the original one, except that the coefficient of the
squared term has been reduced to zero.

Since Cardano, therefore, all theory of the cubic equation has treated this reduced
form, which here will be written

x3 + bx+ c = 0.

From this point on, there are various accounts, all mathematically equivalent. The one
I choose to present here was published in the International Journal of Mathematical Edu-
cation in Science and Technology, February 2003, in a short article by AJB Ward. Ward’s
idea was to do for the cubic what the standard approach of “completing the square”
does for the quadratic.

Recall that for the quadratic

x2 + bx+ c = 0

we seek to find an equivalent form

(x− p)2 = q2
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so that the solutions are x = p ± q. If we compare the two forms, i.e. substitute the
hoped-for value of x into the original quadratic, we find:

(p2 + q2 + bp+ c)± q(2p+ b) = 0

and this equation is easily reduced to the two equations

p2 + q2 + bp+ c = 2p+ b = 0.

We may now solve these equations for p and q, and discover the well-known “for-
mula”.

Ward took the cubic
x3 + bx+ c = 0

and sought to write it as
(x− p)3 = q3

in order to achieve a solution x = p+ ωq, where ω is one of the three cube roots of 1.
Making the substitution as in the quadratic case, he obtained

(p3 + q3 + c) + (3ωpq + b)(p+ ωq) = 0.

To reach this particular form, he must have experimented a little. But now he imposed
the two conditions

p3 + q3 + c = 3ωpq + b = 0.

The analogy with the quadratic case is not exact at this point, but it is still rather
close.

Ward now had two equations for the unknowns p and q. These can be written

p3 + q3 = −c and p3q3 = − b
3

27

which brought him to familiar ground. The insight needed here is that p3 and q3 are
the roots of the quadratic equation

y2 + cy − b3

27
= 0.

(This follows because the first of the two equations relates to the sum of the roots, the
second to their product).

So now, together with all the various solvers before and after Cardano, we can take

p3 =
1

2

{
−c+

√
c2 +

4b3

27

}

q3 =
1

2

{
−c−

√
c2 +

4b2

27

}
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and thus obtain a “formula” for the cubic solution

x = 3

√√√√1

2

{
−c+

√
c2 +

4b3

27

}
+ ω 3

√√√√1

2

{
−c−

√
c2 +

4b3

27

}
.

Now cubics (again overlooking special cases: two or three equal roots) may be of
two types, as shown below. On the left is depicted a cubic with three real roots, on the
right, one with one real and two complex roots.
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Just as in the case of the quadratic, we seek in the algebra the means to determine
which type any particular cubic will belong to. Look back at the formula, and note that
there are three possible values that ω may have. 1 and −1±i

√
3

2
.

So if c2 + 4b3

27
is positive, then two of the roots must be complex.

Let us explore these ideas with the aid of the two examples just illustrated. The one
on the left is

(x− 1)(x− 2)(x− 3) = 0.

whose roots are obvious, while that on the right is

(x− 1)(x− 2)(x− 3) = 1,

whose roots are not.
Let us look first at the second equation. If we expand and simplify, we reach

x3 − 6x2 + 11x− 5 = 0.
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We can put this into the standard (reduced) form by replacing x by x+ 2. This gives

x3 − x+ 1 = 0,

so that, in the notation used here, b = −1 and c = 1. Now feed these values into “the
formula”. The details are messy, but involve only simple arithmetic, and a calculator
copes very well. We find that

p ≈ −0.338, q ≈ −0.987.

Taking the obvious value for ω, namely 1, now yields x ≈ −1.325, and if we now
recall that we need to add back the 2 that we used to reduce the equation, we end up
with a value of approximately 0.675 as the value for the real root of the equation (which
may be checked from the diagram). If we also wanted the values of the two complex
roots, we could similarly calculate them using the other two values of ω.

Now consider the first of the two examples. The solution is quite obvious, but we
want to see how the formula fares. First expand the left-hand side, which gives us

x3 − 6x2 + 11x− 6 = 0.

We now need to put this into reduced form, which means replacing x by x+ 2.
This results in the (still simple) reduced equation

x3 − x = 0.

So b = −1 and c = 0. Now we use the formula to find

p = −q = (2i)1/3
b

3

and so we need to take the cube root of an imaginary number. Our simple example is
suddenly starting to look complicated!

However, we may find the cube root involved in this expression. (There are actually

three of them, but one will suffice). We can discover that
(√

3+i
2

)3
= i, and so we have

p = −q = b 2√2
6
(
√
3 + i). If we now insert these values into the formula, with ω = 1,

we find straightaway, x = p + q = 0. This clearly is a root of the reduced equation,
and if we use the other roots, we find that x = ±1 are also solutions. Thus the original
equation has roots that are found by adding back the 2, as before, and so we recover
the roots 1,2,3.

Such a situation always arises when c2+ 4b3

27
or equivalently 27c2+4b3 is negative. It

was shown earlier that if this expression was positive then there was only one real root.
Similarly, it can be shown that whenever there are three real roots, then this expression
is negative and vice versa. The expression 27c2 + 4b3 is called the discriminant of the
cubic, and it plays a role akin to the more familiar discriminant for the quadratic.

The irony is that the supposedly more simple case necessarily involves us in com-
plex numbers. To solve such cubics, we have to use complex numbers there is no
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escape! This was first convincingly explored by Rafael Bombelli (1526–1572), a some-
what younger contemporary of Cardano, who was employed as an engineer (draining
marshes) and worked on Algebra when he had the chance. However, his analysis of
such cubics did appear (although probably later than it might have done had he not
been busy with other matters) to include a full discussion of the algebra of complex
numbers. Indeed he remarked

“I have found another sort of tied cube root [i.e. 3
√
a+
√
b] very different

from the others.”

So for Bombelli, complex numbers were not a new sort of square root (as they have
become for us today), but rather a new sort of cube root! He included as an example,
the reduced equation x3 = 15x + 4, which he solved by noting that (2 + i)3 = 2 + 11i.
You can try this example for yourself. (The roots are 4,−2±

√
3).

It remains perhaps to say that this case (the irreducible case, as it came to be called)
does not yield so readily in all circumstances. The algebraic determination of (a+ ib)1/3

is by no means always possible. This unpleasant truth has been met by means of a
subterfuge.

To find such cube roots, express them in polar form and then use de Moivre’s The-
orem: (cos θ + i sin θ)1/3 = cos(θ/3) + i sin(θ/3).
Indeed this is what I did earlier in my evaluation of (2i)1/3.

We can reflect that this shows a profound link between Algebra and Trigonometry,
two (at first sight) very different aspects of Mathematics. On the other hand, it is a
confounded nuisance, and it has served to limit the usefulness of the formula. But
there’s no getting around it, that’s just how things are!
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