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Solutions to Problems 1171–1180

Q1171. The first digit of a 6-digit number is 1. If the 1 is shifted to the other end, the
new number is 3 times the original number. Find this number.

ANS: A 6-digit number starting with 1 can be written as

100000 + x

where x is a 5-digit number. The new number obtained by shifting 1 to the end is

10x+ 1.

By the assumption, there holds

10x+ 1 = 3(100000 + x),

implying x = 42857. So the original number is x = 142857.

Q1172. Find a number that has 10 divisors such that the product of the divisors is
60466176.

ANS: (submitted by John C. Barton, Victoria).
Since 60466176 = 210310, each divisor can be factorised as 2α13α2 for some integers

α1, α2 ≥ 0. Therefore, the number N to be found has the form N = 2β13β2 for some
integers β1, β2 > 0. Since αi can take any value from 0 to βi, i = 1, 2, the number
of divisors of N is (β1 + 1)(β2 + 1), which is 10 as given. Thus (β1, β2) = (1, 4) or
(β1, β2) = (4, 1), i.e., N = 2 × 34 = 162 or N = 24 × 3 = 48. Neither has divisors with
product 60466176. So there does not exist such a number N. (Note: A number having 9
divisors with the same product does exist. It’s 36!)

Q1173. (submitted by John C. Barton, Victoria).
In a rectangle, the shorter side is 4 times the difference between the diagonal and

the longer side. Find the ratio of the longer side to the shorter side.

ANS: Let a be the length of the shorter side and b be the length of the longer side. Then

a = 4(
√
a2 + b2 − b),

implying

a+ 4b = 4
√
a2 + b2.

By squaring both sides and simplifying we obtain b/a = 15/8.

Q1174. Generalise the inequality in Q1168 (Vol 40, No 2, 2004) to the case of n positive
numbers a1, a2, . . . , an, and prove it.
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ANS: The generalised inequality is

1

an1 + · · ·+ a2n−1 + a1 · · · an
+

1

an2 + · · ·+ a2n + a1 · · · an
+ · · · (1)

+
1

ann + an1 + · · ·+ a2n−2 + a1 · · · an
≤ 1

a1 · · · an
(2)

for a1, a2, . . . , an > 0.
If there holds

an1 + · · ·+ ann−1 ≥ a1 · · · an−1(a1 + · · ·+ an−1) (3)

then
1

an1 + · · ·+ a2n−1 + a1 · · · an
≤ 1

a1 · · · an−1(a1 + · · ·+ an−1) + a1 · · · an

=
1

a1 · · · an−1(a1 + · · ·+ an)

=
an

a1 · · · an(a1 + · · ·+ an)
.

Similarly,

1

an2 + · · ·+ a2n + a1 · · · an
≤ a1

a1 · · · an(a1 + · · ·+ an)
1

an3 + · · ·+ a2n + a21 + a1 · · · an
≤ a2

a1 · · · an(a1 + · · ·+ an)

· · · · · · · · · · · · · · · · · ·
1

ann + an1 + · · ·+ a2n−2 + a1 · · · an
≤ an−1

a1 · · · an(a1 + · · ·+ an)
.

(The missing term in the denominator of the left-hand side appears in the numerator
of the right-hand side.) Adding all the relevant inequalities and simplifying the right-
hand side of the resulting inequality, we obtain (2).

We now prove (3). For notational convenience, we prove instead

an+1
1 + · · ·+ an+1

n ≥ a1 · · · an(a1 + · · ·+ an). (4)

Due to Cauchy’s inequality

a1 · · · an ≤ an1 + · · · ann
n

,

(4) is true if there holds

an+1
1 + · · ·+ an+1

n ≥ 1

n
(an1 + · · · ann)(a1 + · · ·+ an). (5)

By expanding the right-hand side of (5) and rearranging the inequality we see that (5)
is equivalent to

(n− 1)(an+1
1 + · · ·+ an+1

n ) ≥ an1 (a2 + · · ·+ an)

+ an2 (a3 + · · ·+ an + a1) + · · ·
+ ann(a1 + · · ·+ an−1). (6)
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The left-hand side and right-hand side of (6) can be rewritten as

LHS = (an+1
1 + an+1

2 ) + (an+1
1 + an+1

3 ) + · · ·+ (an+1
1 + an+1

n )

+ (an+1
2 + an+1

3 ) + (an+1
2 + an+1

4 ) + · · ·+ (an+1
2 + an+1

n )

+ (an+1
3 + an+1

4 ) + (an+1
3 + an+1

5 ) + · · ·+ (an+1
3 + an+1

n )

+ · · ·
+ (an+1

n−2 + an+1
n−1) + (an+1

n−2 + an+1
n )

+ (an+1
n−1 + an+1

n )

and

RHS = (an1a2 + an2a1) + (an1a3 + an3a1) + · · ·+ (an1an + anna1)

+ (an2a3 + an3a2) + (an2a4 + an4a2) + · · ·+ (an2an + anna2)

+ (an3a4 + an4a3) + (an3a5 + an5a3) + · · ·+ (an3an + anna3)

+ · · ·
+ (ann−2an−1 + ann−1an−2) + (ann−2an + annan−2)

+ (ann−1an + annan−1).

Inequality (6) is true if the sum of each pair in the parentheses of the LHS is greater
than or equal to the sum of the corresponding pair in the RHS. So it suffices to prove

an+1 + bn+1 ≥ anb+ bna ∀a, b > 0.

This inequality is easily seen to be true if we note that it is equivalent to

(an − bn)(a− b) ≥ 0 ∀a, b > 0,

which is true. Therefore, (4) is proved.

Q1175. (submitted by John C. Barton and Julius Guest, Victoria).
Recall that if m and n are two integers such that 0 ≤ n ≤ m, then

(

m

n

)

= m!
n!(m−n)!

.

Find the sum

S =

(

2005

0

)

+ 2

(

2005

1

)

+ 3

(

2005

2

)

+ · · ·+ 2006

(

2005

2005

)

.

ANS:We have by Newton’s binomial expansion

(1 + x)2005 =
2005
∑

k=0

(

2005

k

)

xk,

so that

x(1 + x)2005 =
2005
∑

k=0

(

2005

k

)

xk+1.
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By differentiating both sides of the above identity with respect to x we obtain

(1 + x)2005 + 2005x(1 + x)2004 =
2005
∑

k=0

(

2005

k

)

(k + 1)xk.

Letting x = 1 we then deduce

S =
2005
∑

k=0

(k + 1)

(

2005

k

)

= 22005 + 2005× 22004 = 2007× 22004.

Q1176. Let P be a point on the side AB of an equilateral triangle ABC. Let P1 be the
foot of the perpendicular from P to BC, P2 be the foot of the perpendicular from P1 to
AC, P3 be the foot of the perpendicular from P2 to AB, etc. Show that as n increases
indefinitely, the triangle PnPn+1Pn+2 is tending to become equilateral.

ANS: Let BP1 = x1, CP2 = x2, AP3 = x3, BP4 = x4, CP5 = x5, etc. Let a be the side
length of ∆ABC.

A

B C

x2

P2

x1 P1

P

P3

x3

In ∆P1CP2 there holds
x2

a− x1

= sin 30o =
1

2
,

implying

x2 = −1

2
x1 +

1

2
a.

Similarly, in ∆AP3P2 there holds

x3

a− x2

= sin 30o =
1

2
,
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implying

x3 = −1

2
x2 +

1

2
a =

(

−1

2

)2

x1 +
1

2
a(1− 1

2
).

By using induction we can prove that

xn+1 = −1

2
xn +

1

2
a

=

(

−1

2

)n

x1 +
1

2
a

[

1 +

(

−1

2

)

+

(

−1

2

)2

+ · · ·+
(

−1

2

)n−1
]

=

(

−1

2

)n

x1 +
1

2
a
1−

(

−1
2

)n

1−
(

−1
2

)

=

(

−1

2

)n

x1 +
1

3
a

[

1−
(

−1

2

)n]

.

As n increases infinitely,
(

−1
2

)n
approaches 0 and therefore xn approaches a/3. The

triangle PnPn+1Pn+2 when xn = a/3 is equilateral.

Q1177. Adam and Brian watch the sun setting over the ocean on a calm day. Adam
is 10m above the sea level and Brian is on a cliff top 30m above Adam. How long after
Adam does Brian observe the instant of sunset. (Take the circumference of the earth to
be 40,000km.)

ANS: Let A and B be Adam’s position and Brian’s position, respectively. Adam spots
the sunset when to his eyes the sun is at P , while Brian spots the sunset at Q. The time
difference is the time the earth spins through the arc PQ. Since the distances from their
positions to the sea level are much smaller than the radius R of the earth, the length of
this arc can be approximated by

PQ ≈ BQ− AP.

We have

R =
40000

2π
≈ 6, 366km

AP =
√
OA2 −OP 2 =

√

(

R +
1

100

)2

−R2 ≈
√

R

50
≈ 11.28km

BQ =
√

OB2 −OQ2 =

√

(

R +
4

100

)2

−R2 ≈
√

2R

25
≈ 22.57km.

Thus PQ ≈ 11.28km. The earth spins through 40,000km in one day, i.e., 24 × 60 × 60
seconds. Therefore, it spins through 11.28km in approximately 24.37 seconds. Brian
observes the instant of sunset 24.37 seconds after Adam.
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b

b

O

A

B

Q

P

Q1178. Find a pointM in a triangle ABC satisfying ∠MAB = ∠MBC = ∠MCA.

ANS:

1. Observation: Suppose that such a pointM exists.

b
O1

O2

A

B
C

M
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If (C1) is the circle circumscribing ∆MAB, then, since
∠MAB = ∠MBC, BC is tangent to (C1), i.e., BC ⊥ O1B, where O1 is the centre
of (C1). Similarly, if (C2) is the circle circumscribing ∆MBC, centred at O2, then
AC ⊥ O2C.

2. To drawM :

• Draw O1 as the intersecting point of the line perpendicular to BC at B and
the bisector of AB.

• Draw O2 as the intersecting point of the line perpendicular to AC at C and
the bisector of AC.

• Draw the circle centred at O1 and of radius O1B.

• Draw the circle centred at O2 and of radius O2B.

These two circles must cut at another point M (why?).

This pointM lies inside ∆ABC (why?) and satisfies

∠MAB = ∠MBC = ∠MCA.

Q1179. Prove that (a+ b)2 ≥ a2(1− ǫ)− b2(1 + 1/ǫ) for any a, b ∈ R and ǫ ∈ (0, 1).

ANS:We have
2ab = 2(a

√
ǫ)(b/

√
ǫ) ≥ −a2ǫ− b2/ǫ,

implying

(a+ b)2 = a2 + b2 + 2ab ≥ a2(1− ǫ) + b2(1− 1/ǫ) ≥ a2(1− ǫ)− b2(1 + 1/ǫ).

Q1180. The function defined by

ζ(n,m) =
m
∑

k=1

1

kn
=

1

1n
+

1

2n
+ · · · 1

mn

where n andm are integers, is an example of a special function in mathematics known
as the incomplete Riemann function. Show using elementary operations that

m
∑

k=2

ζ(n, k − 1) = mζ(n,m)− ζ(n− 1,m).
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ANS: First consider the second term on the RHS

ζ(n− 1,m) =
m
∑

k=1

1

kn−1

=
m
∑

k=1

1

kn
· k

=
m
∑

k=1

1

kn
(m− (m− k))

= m

m
∑

k=1

1

kn
−

m
∑

k=1

(m− k)
1

kn

= mζ(n,m)−
m
∑

k=1

(m− k)
1

kn
.

We can now rearrange the above to write

m
∑

k=1

(m− k)
1

kn
= mζ(n,m)− ζ(n− 1,m)

Rightarrow
m−1
∑

k=1

(m− k)
1

kn
= mζ(n,m)− ζ(n− 1,m). (1)

It is convenient to write the LHS of the above equation as

s(n,m) =
m−1
∑

k=1

(m− k)
1

kn
(2)

=
m−1
∑

k=1

(m− k − 1 + 1)
1

kn

=
m−1
∑

k=1

1

kn
+

m−1
∑

k=1

(m− k − 1)
1

kn

=
m−1
∑

k=1

1

kn
+

m−2
∑

k=1

(m− k − 1)
1

kn

= ζ(n,m− 1) + s(n,m− 1).

Hence
s(n,m)− s(n,m− 1) = ζ(n,m− 1) m ≥ 3

We can now sum over the second index in the above equation to write

m
∑

k=3

s(n, k)− s(n, k − 1) =
m
∑

k=3

ζ(n, k − 1).
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But on the LHS of the above equation alternate forms cancel so that all that remains is

s(n,m)− s(n, 2) =
m
∑

k=3

ζ(n, k − 1)

Rightarrow s(n,m) = s(n, 2) +
m
∑

k=3

ζ(n, k − 1).

Finally we note that
s(n, 2) = ζ(n, 1) = 1.

Hence we can write

s(n,m) =
m
∑

k=2

ζ(n, k − 1). (3)

The results in Equations (1), (2), (3) now combine to give the required result.

This problem and its solution was submitted by N.P. Sing, Bihar, India.
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