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Unsolved Problems1

George Szekeres

In the October 1964 issue of Parabola, the article on the Four Colour Problem called
your attention to the existence of numerous unsolved mathematical problems which
can be stated in quite simple non-technical terms. From time to time we wish to write
about such “elementary” unsolved problems.

In the same issue, one of our readers, G. Owerchuk, asked what is the largest num-
ber nr of points which may be completely connected with coloured line segments using
r different colours in such a way that no one colour triangle results.

For the special case r = 2 the problem was set in a previous issue of Parabola (Vol.
1, No. 1 Problem 07) and readers were asked to prove n2 = 5. Apart from a few small
values of r (n1 = 2, n2 = 5, n3 = 16) the general solution of the problem is unknown.
It can be shown by the same method as used in the solution of 07 that

nr ≤ r nr−1 + 1 (1)

For let c1, c2, . . . , cr be the r given colours, p0 one of the given points, and s1 the
set of points connected to p0 by a line segment of colour c1. No two points p1p2 of the
set s1 can be connected by colour c1, since otherwise p0p1p2 would be a one colour
triangle. Hence the segments connecting points of s1 can have only r − 1 colours,
namely c2, c3, . . . , cr. Since they are not supposed to form a triangle of the same colour,
s1 contains at most nr−1 points. The same is true of s2, the set of points connected to p0
with a segment of colour c2, etc. Thus the sets s1, s2, . . . , sr, contain altogether at most
r nr−1 points. Since these points together with p0 exhaust all points of the diagram, we
obtain the required inequality.

From the inequality it follows by mathematical induction that

nr ≤ r!

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

r!

)
. (2)

In fact, for r = 1, the inequality becomes n1 ≤ 1!
(
1 + 1

1!

)
= 2, which is true since

obviously n1 = 2. Now let r > 1 and suppose that we have already proved that

nr−1 ≤ (r − 1)!

(
1 +

1

1!
+ · · ·+ 1

(r − 1)!

)
. (3)

1This article is reprinted from Parabola Vol. 2, No. 2, 1965.
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Then the inequalities (1) and (3) give

nr ≤ r nr−1 + 1

≤ r(r − 1)!

(
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1

1!
+ · · ·+ 1

(r − 1)!

)
+ 1

= r!

(
1 +

1

1!
+ · · ·+ 1

(r − 1)!
+

1

r!

)
,

which proves (2).

For r = 2, we have n2 ≤ 2!

(
1 +

1

1!
+

1

2!

)
= 5 and for r = 3

n3 ≤ 3!

(
1 +

1

1!
+

1

2!
+

1

3!

)
= 16.

In both cases there is equality, n2 = 5, n3 = 16. To verify these values it is sufficient
to produce a configuration of the required kind with 5 points and 2 colours, or 16 points
and 3 colours. An example with 5 points and 2 colours was reproduced in Parabola Vol.
1 No.2. The following is a configuration with 16 points and 3 colours, due to Mr. Cox.

We designate the 16 points by

p0 q1 q2 q3 q4 q5

r1 r2 r3 r4 r5

s1 s2 s3 s4 s5

The following segments are given the colour c1,

p0 q1, p0 q2, p0 q3, p0 q4, p0 q5,
s1 s2, s2 s3, s3 s4, s4 s5, s5 s1,
r1 r3, r3 r5, r5 r2, r2 r4, r4 r1,
r1 s1, r2 s2, r3 s3, r4 s4, r5 s5,
q1 r3, q2 r4, q3 r5, q4 r1, q5 r2,
q1 r4, q2 r5, q3 r1, q4 r2, q5 r3,
s1 q4, s2 q5, s3 q1, s4 q2, s5 q3,
s1 q5, s2 q1, s3 q2, s4 q3, s5 q4.

Those given the colour c2 are obtained by replacing qi by ri, ri by si and si by qi
in each entry of the previous scheme, and those given the colour c3 are obtained by a
similar cyclic replacement of qi by si, ri by qi, and si, by ri.

Because of the perfectly symmetrical and cyclic nature of the construction it is quite
sufficient to verify that no c1 triangle exists in which one of the segments is p0 q1, or
s1 s2, or r1 r3, or r1 s1, or q1 r3, or q1 r4, or s1 q4, or s1 q5. This can be done quite easily
by inspection of the diagram.

For r > 3 nothing definite is known about the problem. It may be conjectured that
for every r

nr = r!

(
1 +

1

1!
+ · · ·+ 1

r!

)
,
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that is, there exists a configuration with that many points when r colours are used. For
r = 4, there is a known configuration with 41 points (published in 1955 by Greenwood
and Gleason in the Canadian Journal of Mathematics), but whether this can be bettered
to the theoretically best possible value, 65, is not known.

In the next issue we shall deal with another famous unsolved problem on configu-
rations.

Commentary by Catherine Greenhill

The open question described in this issue falls in the area of Ramsey Theory. The
definition of a complete graph Kn on n vertices is given in the article on Ramsey Num-
bers on p.11. The question is, what is the largest value of n such that the edges of Kn

can be coloured with r colours without forming a monochromatic triangle (coloured
with just one colour)? This largest value of n is denoted by nr.

When r = 2 this is very closely related to the Ramsey number R(3) described in the
article on Ramsey Numbers. In fact R(3) = n2 + 1 (convince yourself that this is true).
So we know that n2 = 5. George’s description of the problem included a proof of this
recurrence:

nr ≤ rnr−1 + 1.

From this he derived the upper bound

nr ≤ r! (1 + 1/1! + 1/2! + · · ·+ 1/r!)

and conjectured that this bound might be correct for r ≥ 2. One known result was
mentioned: n3 = 16 as proved by Greenwood and Gleason in 1955.

This is still an extremely difficult problem and there has been very little progress.
No other exact values of nr are known. We know that

50 ≤ n4 ≤ 61.

The lower bound was proved by Fan Chung in 1973 and the upper bound was proved
by Fettes, Kramer and Radziszowski in 2004. In particular, this shows that George’s
conjecture was incorrect since it predicted that n4 = 65, which is too big.

This problem has been generalised in many ways. In particular, let N be the largest
value of n so that the edges of Kn can be coloured red, blue and purple such that there
is no red triangle, no blue triangle and no purple copy of K4. It is known that

30 ≤ N ≤ 31.

The lower bound was proved by Kalbfleisch in 1966 and the upper bound was proved
by Piwakowski and Radziszowski in 2001. Since the upper and lower bound are so
close, perhaps this particular problem will soon be solved.
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