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Ramsey numbers

Catherine Greenhill1

How many people must attend a party before you are sure that you can find either
three people who all know each other, or three people who do not know each other?
This is a question in an area called Ramsey Theory.

We can rephrase this question in terms of graphs. The complete graph of size n, de-
noted by Kn, consists of a set of n objects, called vertices, such that all n(n− 1)/2 =

(
n
2

)
unordered pairs of vertices form an edge. We draw a graph with black dots for vertices
and a line between two vertices for an edge. Figure 1 shows the complete graphs K3,
K4 and K5 on 3, 4 and 5 vertices, respectively. Now we can model the party using the

Figure 1: The complete graphs K3, K4 and K5

complete graph Kn, where n is the number of party-goers. Colour the edge from x to
y red if x and y knew each other before the party, and blue otherwise. A subgraph is
called red if all its edges are red, and similarly for blue subgraphs. Our question now
asks whether the graph contains either a red triangle or a blue triangle.

More generally, for integers s, t ≥ 2 let R(s, t) be the least positive integer n such
that any red-blue colouring of the edges of Kn contains either a red Ks or a blue Kt. Set
R(s, t) = ∞ if no such minimum n exists. Write R(s) = R(s, s) for the diagonal case.
The numbers R(s, t) are called Ramsey numbers.

What can we say about these Ramsey numbers? It is not difficult to see that R(s, t) =
R(t, s). In 1930, Frank Ramsey proved that the diagonal Ramsey numbers R(s) are fi-
nite for all s ≥ 2.

Exercise:

(i) Prove that R(3) = 6. This answers the question stated at the start of the article.

(ii) Prove that R(s, 2) = R(2, s) = s.
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University of NSW.
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George Szekeres, together with Paul Erdös, proved a very nice recurrence for Ram-
sey numbers, which we will now describe.

Theorem (Erdös & Szekeres 1935). If s > 2, t > 2 then

R(s, t) ≤ R(s− 1, t) +R(s, t− 1). (1)

Proof. Note that R(r, 2) = R(2, r) = r is finite, for all r ≥ 2. So we may assume, by
induction on ` that R(r, `) is finite, for some ` ≥ 2. In particular, we can assume that
that R(s−1, t) and R(s, t−1) are finite. Once we establish (1) this will prove that R(s, t)
is finite, and the induction can continue.

Now set n = R(s− 1, t) +R(s, t− 1). Consider any red-blue colouring of the edges
of the complete graph Kn. We want to show that in this colouring, there is either a
red Ks or a blue Kt. Let x be a vertex of Kn. Since x is contained in n − 1 edges, and
n− 1 = R(s− 1, t)+R(s, t− 1)− 1, either (a) there are at least n1 = R(s− 1, t) red edges
incident with x, or (b) there are at least n2 = R(s, t− 1) blue edges incident with x. By
symmetry we may assume that the first case holds.

Next, consider a subgraph Kn1 spanned by the n1 vertices which are joined to x by
red edges. If Kn1 contains a blue Kt, then we are done. So, suppose that Kn1 does not
contain a blue Kt. Then, by the definition of R(s− 1, t), the graph Kn−1 must contain a
red Ks−1. This subgraph, together with x, forms a red Ks. This completes the proof of
(1).

Exercise: Use this recurrence to prove that

R(s, t) ≤
(
s+ t− 2

s− 1

)
for all s, t ≥ 2.

This gives an upper bound for the Ramsey numbers R(s, t). But very few of the
Ramsey numbers are known precisely. As mentioned above, R(3) = 6. It can be shown
that

R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18, R(3, 7) = 23,

and
R(3, 8) = 28, R(3, 9) = 36, R(4) = 18, R(4, 5) = 25.

All other Ramsey numbers are beyond the limit of current computing power to deter-
mine.

Paul Erdös had a story which illustrated the difficulty of calculating the Ramsey
numbers. Here is a paraphrased version: suppose that evil aliens land on the earth and
say that they are going to come back in five years and blow it up, unless humankind
can tell them the value of R(5) when they come back. Then all the mathematicians
and computer scientists of the world should get together, and using all the computers
in the world, we would probably be able to compute R(5) and save the earth. But
what if the aliens had instead said that they would blow up the earth unless we could
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calculate R(6) in five years? In that case, the best strategy that humankind could follow
would be to divert everyone’s energy and resources into weapons research for the next
five years, because finding R(6) is just too hard.

The diagonal Ramsey numbers R(s) = R(s, s) are of the most interest. When s = t the
upper bound is of the form

R(s) ≤
(
2s− 2

s− 1

)
.

Using something called Stirling’s formula, this bound implies that

R(s) ≤ 22s−2

√
s
.

So this gives an upper bound of about 4s/
√
s for the rate of growth of the diagonal

Ramsey numbers. In 1988 Thomassen proved that R(s) ≤ 4s/s, a slight improvement.
This is the best known upper bound for the diagonal Ramsey numbers. But the best
known lower bounds are much much smaller: it is known that R(s) ≥ s2s/2. The enor-
mous gap between the lower bound and upper bound intrigues many mathematicians,
but it seems very difficult to bring these bounds any closer together.
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