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Games with Inverse Tangents

Michael D Hirschhorn1

In this article I am going to assume you are a little bit familiar with the inverse
tangent function, tan−1 x = arctanx. There are several properties of this function that
you need to know.

Firstly tan−1 x is defined by the property that tan(tan−1 x) = x and tan−1(tanx) = x.
In particular if tan−1 x = π

4
then tan(tan−1 x) = tan

(
π
4

)
= 1, and hence

tan−1 1 =
π

4
. (1)

The following addition formulae are true for the inverse tangent function,

tan−1 a+ tan−1 b = tan−1
(
a+ b

1− ab

)
(2)

and

tan−1 a− tan−1 b = tan−1
(
a− b
1 + ab

)
, (3)

provided |ab| < 1 can be derived from the identity

tan(θ + φ) =
tan θ + tanφ

1− tan θ tanφ
,

which you may know from school. The steps leading to the addition formulae are as
follows:

tan−1 (tan(θ + φ)) = tan−1
(

tan θ + tanφ

1− tan θ tanφ

)
⇒ θ + φ = tan−1

(
tan θ + tanφ

1− tan θ tanφ

)
.

Now write θ = tan−1 a and φ = tan−1 b, then

tan−1 a+ tan−1 b = tan−1
(

tan(tan−1 a) + tan(tan−1 b)

1− tan(tan−1 a) tan(tan−1 b)

)
= tan−1

(
a+ b

1− ab

)
.

1Michael Hirschhorn is a Senior Lecturer in Pure Mathematics at UNSW.
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The property of the inverse tangent function that we are most interested in here is

tan−1 x = x− x3

3
+
x5

5
· · · (4)

provided |x| ≤ 1.
Before proving (3), let me show you the game to which I wish to introduce you.

Suppose x =
1

n
where n is a large integer. Then

tan−1 x = tan−1
(
1

n

)
=

1

n
− 1

3n3
+

1

5n5
−+ · · ·

can be calculated quickly and accurately, since the series converges rapidly. (What I
mean by this is that the terms on the right get smaller very quickly, the more so as n
gets larger.)
So, for example,

tan−1
(
1

2

)
+ tan−1

(
1

3

)
= tan−1

( 1
2
+ 1

3

1− 1
2
× 1

3

)
= tan−1 1

=
π

4
,

so

π = 4

(
tan−1

(
1

2

)
+ tan−1

(
1

3

))
= 4

((
1

2
− 1

3× 23
+

1

5× 25
−+ · · ·

)
+

(
1

3
− 1

3× 33
+

1

5× 35
−+ · · ·

))
,

which gives us a way of calculating π. (We could also have used the fact that

π = 4 tan−1 1

= 4

(
1− 1

3
+

1

5
−+ · · ·

)
,

but the series on the right converges very slowly.)
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Before going on with the game, let me prove (4). We know that the sum to n terms
of the geometric series is

1− t2 + t4 − t6 +− · · · + (−1)n−1t2n−2 = 1− (−1)nt2n

1 + t2
.

We can rearrange this as follows:

1

1 + t2
= 1− t2 + t4 − t6 +− · · · + (−1)n−1t2n−2 + (−1)n t2n

1 + t2
.

If we integrate this from 0 to x, we find (use the substitution t = tan θ),

tan−1 x = x− x3

3
+
x5

5
−+ · · · + (−1)n−1 x

2n−1

2n− 1
+ (−1)n

∫ x

0

t2n

1 + t2
dt

= x− x3

3
+
x5

5
−+ · · · + (−1)n−1 x

2n−1

2n− 1
+ (−1)nεn

where

0 ≤ εn =

∫ x

0

t2n

1 + t2
dt ≤

∫ x

0

t2n dt =
x2n+1

2n+ 1
.

Suppose now that we fix x in the interval 0 ≤ x ≤ 1 and let n→∞.
Then 0 ≤ εn ≤ 1

2n+1
→ 0, and

tan−1 x = x− x3

3
+
x5

5
−+ · · ·

which is (3). Let us return to the game. A famous and ancient formula for π is

π = 16 tan−1
(
1

5

)
− 4 tan−1

(
1

239

)
.

It was used some hundreds of years ago to calculate π to hundreds of decimals. Let us
see if that is correct. The formulae in (2), (3) can be used to write

2 tan−1
(
1

5

)
= tan−1

( 1
5
+ 1

5

1− 1
5
× 1

5

)
= tan−1

(
5

12

)
,

4 tan−1
(
1

5

)
= tan−1

( 5
12

+ 5
12

1− 5
12
× 5

12

)
= tan−1

(
120

119

)
,

4 tan−1
(
1

5

)
− tan−1

(
1

239

)
= tan−1

(
120

190

)
− tan−1

(
1

239

)
= tan−1

( 120
119
− 1

239

1 + 120
119
× 1

239

)
= tan−1

(
120× 239− 119

119× 239 + 120

)
= tan−1 1 =

π

4
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and

π = 16 tan−1
(
1

5

)
− 4 tan−1

(
1

239

)
= 16

(
1

5
− 1

3× 53
+

1

5× 55
−+ · · ·

)
− 4

(
1

239
− 1

3× 2393
+

1

5× 2395
−+ · · ·

)
.

If we use just the first eight terms in the first series and the first two in the second
series, we find

π ≈ 3.14159265358962 . . . ,

which is correct to 12 decimal places! Maybe you can find some interesting or useful

results?
Here are some I found:

π

4
= tan−1

(
1

2

)
+ tan−1

(
1

5

)
+ tan−1

(
1

8

)
= 2 tan−1

(
1

3

)
+ tan−1

(
1

7

)
= 3 tan−1

(
1

4

)
+ tan−1

(
1

20

)
+ tan−1

(
1

1985

)
= tan−1

(
1

4

)
+ tan−1

(
1

5

)
+ tan−1

(
1

6

)
+ tan−1

(
1

7

)
+ tan−1

(
1

30

)
+ tan−1

(
1

372

)
− tan−1

(
1

32307

)
.

More systematically,

tan−1
(
1

n

)
= tan−1

(
1

n+ 1

)
+ tan−1

(
1

n2 + n+ 1

)
, (5)

so

π

4
= tan−1(1)

= tan−1
(
1

2

)
+ tan−1

(
1

3

)
= tan−1

(
1

2

)
+ tan−1

(
1

4

)
+ tan−1

(
1

13

)
= tan−1

(
1

3

)
+ tan−1

(
1

4

)
+ tan−1

(
1

7

)
+ tan−1

(
1

13

)
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= tan−1

(
1

3

)
+ tan−1

(
1

5

)
+ tan−1

(
1

7

)
+ tan−1

(
1

13

)
+ tan−1

(
1

21

)
= tan−1

(
1

3

)
+ tan−1

(
1

5

)
+ tan−1

(
1

7

)
+ tan−1

(
1

14

)
+ tan−1

(
1

21

)
+ tan−1

(
1

183

)
= tan−1

(
1

4

)
+ tan−1

(
1

5

)
+ tan−1

(
1

7

)
+ tan−1

(
1

13

)
+ tan−1

(
1

14

)
+ tan−1

(
1

21

)
+ tan−1

(
1

183

)
= etc.

(with all arguments different), or

π

4
= tan−1(1)

= tan−1

(
1

2

)
+ tan−1

(
1

3

)
= 2 tan−1

(
1

3

)
+ tan−1

(
1

7

)
= 2 tan−1

(
1

4

)
+ tan−1

(
1

7

)
+ 2 tan−1

(
1

13

)
= 2 tan−1

(
1

5

)
+ tan−1

(
1

7

)
+ 2 tan−1

(
1

13

)
+ 2 tan−1

(
1

21

)
= 2 tan−1

(
1

6

)
+ tan−1

(
1

7

)
+ 2 tan−1

(
1

13

)
+ 2 tan−1

(
1

21

)
+ 2 tan−1

(
1

31

)
= 3 tan−1

(
1

7

)
+ 2 tan−1

(
1

13

)
+ 2 tan−1

(
1

21

)
+ 2 tan−1

(
1

31

)
+ 2 tan−1

(
1

43

)
= 3 tan−1

(
1

8

)
+ 2 tan−1

(
1

13

)
+ 2 tan−1

(
1

21

)
+ 2 tan−1

(
1

31

)
+ 2 tan−1

(
1

43

)
+ 2 tan−1

(
1

57

)
= etc.

(using (4) on the term with the least denominator each time.) We also have

tan−1
(

1

2n− 1

)
= tan−1

(
1

2n+ 1

)
+ tan−1

(
1

2n2 + 1

)
+tan−1

(
1

4n4 + 2n2 + 1

)
, (6)

so we can keep all denominators odd.
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π

4
= tan−1(1)

= 2 tan−1
(
1

3

)
+ tan−1

(
1

7

)
= 2 tan−1

(
1

5

)
+ tan−1

(
1

7

)
+ 2 tan−1

(
1

9

)
+ 2 tan−1

(
1

73

)
= 3 tan−1

(
1

7

)
+ 2 tan−1

(
1

9

)
+ 2 tan−1

(
1

19

)
+ 2 tan−1

(
1

73

)
+ 2 tan−1

(
1

343

)
= etc.

More importantly, perhaps,

tan−1
(

1

2n− 1

)
− tan−1

(
1

2n+ 1

)
= tan−1

(
1

2n2

)
. (7)

If we write 1, 2, . . . , N for n, and add, we get

π

4
− tan−1

(
1

2N + 1

)
=

N∑
n=1

tan−1
(

1

2n2

)
,

and if we let N →∞,
π

4
=
∞∑
n=1

tan−1
(

1

2n2

)
.

This can actually be written in the following very interesting form:

π

4
=
∞∑
n=1

{
1

2n2
− 1

3× 23n6
+

1

5× 25n10
−+ · · ·

}
=

1

2
ζ(2)− 1

3× 23
ζ(6) +

1

5× 25
ζ(10)−+ · · ·

where ζ(k) =
∞∑
n=1

1

nk
,

and it is known that if k is even (as it is in our identity (7)) that ζ(k) is a rational multiple
of πk ! So (7) expresses π as a series in even powers of π, which is quite exciting!

Just one closing remark: if {Fn} denotes the Fibonacci sequence,

{Fn}n≥0 = {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . }
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then F2n+2F2n+1 = F 2
2n+1

and tan−1
(

1

F2n

)
− tan−1

(
1

F2n+2

)
= tan−1

(
1

F2n+1

)
.

If we put n = 1, 2, . . . , N and add, we obtain

π

4
− tan−1

(
1

F2N+2

)
=

N∑
n=1

tan−1
(

1

F2n+1

)
.

If we now let N →∞, we find

π

4
=
∞∑
n=1

tan−1
(

1

F2n+1

)
= tan−1

(
1

2

)
+ tan−1

(
1

5

)
+ tan−1

(
1

13

)
+ · · · .
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