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Games with Inverse Tangents

Michael D Hirschhorn!

In this article I am going to assume you are a little bit familiar with the inverse
tangent function, tan~! z = arctanz. There are several properties of this function that

you need to know.
Firstly tan™! z is defined by the property that tan(tan~' ) = z and tan™!(tanz) = z.

In particular if tan~' 2 = T then tan(tan~' z) = tan (Z) = 1, and hence
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T
tan t1 ==, 1
an 1 (1)

The following addition formulae are true for the inverse tangent function,

b
tan 'a+tan"'b = tan”! ot (2)

1 —ab

and
tan"'a—tan"'b = tan”’ (f;;b) ; 3)
provided |ab| < 1 can be derived from the identity
tan 6 + tan ¢
tan(6 =
an(6 + ) 1 —tanftan¢’

which you may know from school. The steps leading to the addition formulae are as
follows:

tan”! (tan(0 + ¢)) = tanl(tan0+tan¢)

1 —tanftan ¢

tan 6 + tan ¢
1 —tanftan¢ /

= 0+¢ = tanl(

Now write § = tan~! a and ¢ = tan~' b, then

tan-la+tan-'b — tan-! ( tan(tan~! a) + tan(tan~! b) >

1 — tan(tan! @) tan(tan=1 b)

= tan~! ath
1l—ab)’
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The property of the inverse tangent function that we are most interested in here is
3 .5
o
tantox =2 — = ... 4
5t (4)

provided |z| < 1.
Before proving (3), let me show you the game to which I wish to introduce you.

Suppose x = — where n is a large integer. Then
n

can be calculated quickly and accurately, since the series converges rapidly. (What I
mean by this is that the terms on the right get smaller very quickly, the more so as n
gets larger.)

So, for example,

SO

7r:4(tan_1 (1) + tan™! (1))
2 3
:4((1_ 1 + 1 __|_...)
2 3 x2 5x25
1 1 1
+(§_3x33+5x35_+m>)’

which gives us a way of calculating 7. (We could also have used the fact that

7 =4tan"'1

1 1
41—+ 4 ...
(oars)

but the series on the right converges very slowly.)
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Before going on with the game, let me prove (4). We know that the sum to n terms
of the geometric series is

1— (1)

1 _ t2 t4 _ t6 I _1 TL*th’I’L*Z — .

* - =D 14 t2

We can rearrange this as follows:
; T S L BT (_1)n—1t2n—2 +(=1)" t2n
1+12 1+t

If we integrate this from 0 to z, we find (use the substitution ¢ = tan 6),

3 5 2n—1 T t2n
tan "l = o — b — e -l-(—l)Wl—m +(—1)n/ dt
0

35 on — 1 1+
P T 21
_ = - _177,71— _1nn
Tog et + (1) 2n—1+( e

where

x t?n T x2n+1
ogenz/n dtg/hﬁﬁﬁ: :
o 1+1¢2 0 2n+1
Suppose now that we fix z in the interval 0 < z < 1and letn — oc.
Then 0 < ¢, < ﬁ — 0, and

x> ad

tan ' =1 — — 4+ —+ .-
3 5

which is (3). Let us return to the game. A famous and ancient formula for 7 is

1 1
=1 -1 =\ _ 4 -1 (_~ )
T 6 tan (5) tan (239)

It was used some hundreds of years ago to calculate 7 to hundreds of decimals. Let us
see if that is correct. The formulae in (2), (3) can be used to write

1 T+ 3 5
2tan ! <5> = tan~! <151—51> = tan”' (E) )
—5%5
1 S+ 12
4tan”! <5> = tan~’ (1125%) = tan~' (%) )
T 12 712
1 1 12 1
dtan” ' (=) —tan!' [ — ) =tan"' [ — | —tan"! [ —
5 239 190 239

9
120 1
:tanfl ( fgug 2—391 ) :tanfl (120 X 239 — 119)
1+ 155 X 339 119 x 239 4+ 120

T
4

=tan'1 =



and

1 1 1
Y — 4 ).
(239 3 x 2393 * 5 x 2395 * )
If we use just the first eight terms in the first series and the first two in the second

series, we find
T~ 3.14159265358962 . . .,

which is correct to 12 decimal places! Maybe you can find some interesting or useful

results?
Here are some I found:

E—tan_1 1 +tan_1 1 +tan_1 1
4 2 5 8

1 1 1
tan™' [ = ) = tan* tan ™' [ —————— 5
an (n) an <n+1>+ an <n2+n—i—1>’ ®)

SO

— =tan"'(1)
= tan ' (%) + tan ™! (%)
= tan ' <%> + tan™* <i) + tan ™ (%3)
= tan ' (é) + tan~* <éll) + tan ™ (;) + tan~* (E)



(with all arguments different), or

% = tan"1(1)

1 1
= tan~! <) +tan_1 <
2 3

1
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—|—tarfl (
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(using (4) on the term with the least denominator each time.) We also have

1 1 1
tan~! = tan~! +tan~ ! [ ———
2n—1 2n + 1 2n? 41

1
tan™! [ ———— 6
tan (47’L4+2nz+1)7 (6)

so we can keep all denominators odd.



= 2tan " 1 + tan~! 1
3 7
= 2tan ! 1 + tan~? 1 + 2tan~! 1 +2tan~ ! [ —
) 7 9 73
1 1 1
= 3tan* (5) + 2tan”! §> + 2tan~! (1—)
1 1
2tan~! [ — 2tan" ! [ —
+otan (73) +=tan (343>
= etc.

More importantly, perhaps,

1 1 1
-1 -l —tant () 7
tan (Qn—l) tan (Qn—l—l) tan <2n2) (7)

If we write 1, 2, ... , N for n, and add, we get

m —1
Z ¢ tan _
g <2N+1) Z o (2n2>’

and if we let N — oo,
= Ztan (ﬁ) .

This can actually be written in the followmg very interesting form:

T o= 1 [ N
4 =202 3x 2308 5 x 25010
1 1
§c<2> 50(6) +

3 X
where i ik

G(10) = +---

23 5 x 25

and it is known that if & is even (as it is in our identity (7)) that ((k) is a rational multiple
of 7 ! So (7) expresses 7 as a series in even powers of , which is quite exciting!

Just one closing remark: if { F},} denotes the Fibonacci sequence,

{Fn}nzo ={0,1,1,2 3,5 8 13,21, ... }



then F2n+2F2n+1 = F22n+1

1 1 1
and tan™! [ — | —tan™! ( ) — tan " ( > .
<F2n) Fonyo Fopq

Ifweputn =1, 2, ... ,N and add, we obtain
N
T 1 1
— —tan~! = tan ™! ( ) .
4 (F2N+2) ; F2n+1

If we now let N — oo, we find




